We have examined the stereoselectivity of molecular recognition between two molecules of the anesthetic sevoflurane using broadband rotational spectroscopy. The transient axial chirality of sevoflurane is revealed upon the formation of the dimer, as two different diastereoisomers made of either homo- or heterochiral species are detected in a supersonic jet expansion. The conformational assignment was confirmed by the observation of eighteen different isotopologues in natural abundance (all possible (13)C's and two (18)O species of the homochiral form). The two clusters are formed in practically equal proportions (1.1 : 1), probably due to their similar hydrogen bonding topologies. In both clusters the complex is stabilized by a primary C-H···O hydrogen bond, assisted by weak C-HF interactions. This intermolecular binding regime is characterized by a mixture of electrostatic and dispersive interactions, midway between classical hydrogen bonds and van der Waals clusters.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp01025jDOI Listing

Publication Analysis

Top Keywords

chiral recognition
4
recognition atropisomerism
4
atropisomerism sevoflurane
4
sevoflurane dimer
4
dimer examined
4
examined stereoselectivity
4
stereoselectivity molecular
4
molecular recognition
4
recognition molecules
4
molecules anesthetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!