Root Cap-Derived Auxin Pre-patterns the Longitudinal Axis of the Arabidopsis Root.

Curr Biol

Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. Electronic address:

Published: May 2015

During the exploration of the soil by plant roots, uptake of water and nutrients can be greatly fostered by a regular spacing of lateral roots (LRs). In the Arabidopsis root, a regular branching pattern depends on oscillatory gene activity to create prebranch sites, patches of cells competent to form LRs. Thus far, the molecular components regulating the oscillations still remain unclear. Here, we show that a local auxin source in the root cap, derived from the auxin precursor indole-3-butyric acid (IBA), modulates the oscillation amplitude, which in turn determines whether a prebranch site is created or not. Moreover, transcriptome profiling identified novel and IBA-regulated components of root patterning, such as the MEMBRANE-ASSOCIATED KINASE REGULATOR4 (MAKR4) that converts the prebranch sites into a regular spacing of lateral organs. Thus, the spatiotemporal patterning of roots is fine-tuned by the root cap-specific conversion pathway of IBA to auxin and the subsequent induction of MAKR4.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2015.03.046DOI Listing

Publication Analysis

Top Keywords

arabidopsis root
8
regular spacing
8
spacing lateral
8
prebranch sites
8
root
6
root cap-derived
4
auxin
4
cap-derived auxin
4
auxin pre-patterns
4
pre-patterns longitudinal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!