EGFR and MEK Blockade in Triple Negative Breast Cancer Cells.

J Cell Biochem

Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy.

Published: December 2015

Although evidence suggests that the RAF/MEK/ERK pathway plays an important role in triple negative breast cancer (TNBC), resistance to MEK inhibitors has been observed in TNBC cells. Different mechanisms have been hypothesized to be involved in this phenomenon, including receptor tyrosine kinase-dependent activation of the PI3K/AKT pathway. In this study, we analyzed the effects of the MEK1/2 inhibitor selumetinib in combination with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib in a panel of TNBC cell lines that showed different levels of sensitivity to single-agent selumetinib: SUM-149 and MDA-MB-231 cells resulted to be sensitive, whereas SUM-159, MDA-MB-468 and HCC70 cells were relatively resistant to the drug. Treatment of TNBC cells with selumetinib produced an increase of the phosphorylation of the EGFR both in selumetinib-sensitive SUM-149, MDA-MB-231 and in selumetinib-resistant MDA-MB-468 TNBC cells. The combination of selumetinib and gefitinib resulted in a synergistic growth inhibitory effect in all the TNBC cell lines, although the IC50 was not reached in SUM-159 and MDA-MB-468 cells. This effect was associated with an almost complete suppression of ERK1/2 activation and a reduction of selumetinib-induced AKT phosphorylation. In addition, in selumetinib-sensitive TNBC cells the combination of selumetinib and gefitinib induced a significant G0/G1 cell cycle arrest and apoptosis. Taken together, our data demonstrated that blockade of the EGFR might efficiently increase the antitumor activity of selumetinib in a subgroup of TNBC and that this phenomenon might be related to the effects of such combination on both ERK1/2 and AKT activation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.25220DOI Listing

Publication Analysis

Top Keywords

tnbc cells
16
triple negative
8
negative breast
8
breast cancer
8
cells
8
tnbc
8
tnbc cell
8
cell lines
8
sum-149 mda-mb-231
8
sum-159 mda-mb-468
8

Similar Publications

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

Differential Mitochondrial Redox Responses to the Inhibition of NAD Salvage Pathway of Triple Negative Breast Cancer Cells.

Cancers (Basel)

December 2024

Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD. Over expression of Nampt, the rate-limiting enzyme of the NAD biosynthesis salvage pathway, is common in breast cancer cells, and more so in triple negative breast cancer (TNBC) cells. Targeting the salvage pathway has been pursued for cancer therapy.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) remains a challenging subtype due to its aggressive nature and limited treatment options. This study investigated the potential synergistic effects of Korean mistletoe lectin ( L. agglutinin, VCA) and cisplatin on MDA-MB-231 TNBC cells using both 2D and 3D culture models.

View Article and Find Full Text PDF

Previous data show that the knockdown of the gene in the MDA-MB-231 cell line leads to the downregulation of gene expression. In addition, and genes are co-expressed and dysregulated in some of the same triple negative breast cancer patient samples. We propose that the co-expression of the two genes is attributed to the MYBL1 transcription factor regulation of the gene.

View Article and Find Full Text PDF

Background: Granzyme B (GrB) is a key effector molecule, delivered by cytotoxic T lymphocytes and natural killer cells during immune surveillance to induce cell death. Fusion proteins and immunoconjugates represent an innovative therapeutic approach to specifically deliver a deadly payload to target cells. Epithelial membrane protein-2 (EMP2) is highly expressed in invasive breast cancer (BC), including triple-negative BC (TNBC), and represents an attractive therapeutic target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!