Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol.

Chemosphere

Institute of Resource, Ecosystem and Environment of Agriculture, and Center of Agricultural and Climate Change, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China. Electronic address:

Published: January 2016

Maize production plays an important role in global food security, especially in arid and poor-soil regions. Its production is also increasing in China in terms of both planting area and yield. However, maize productivity in rainfed croplands is constrained by low soil fertility and moisture insufficiency. To increase the maize yield, local farmers use NPK fertilizer. However, the fertilization regime (CF) they practice is unbalanced with too much nitrogen in proportion to both phosphorus and potassium, which has led to low fertilizer use efficiency and excessive greenhouse gases emissions. A two-year field experiment was conducted to assess whether a high yielding but low greenhouse gases emission system could be developed by the combination of balanced fertilization (BF) and biochar amendment in a rainfed farmland located in the Northern region of China. Biochar was applied at rates of 0, 20, and 40 t/ha. Results show that BF and biochar increased maize yield and partial nutrient productivity and decreased nitrous oxide (N2O) emission. Under BF the maize yield was 23.7% greater than under CF. N2O emissions under BF were less than half that under CF due to a reduced N fertilizer application rate. Biochar amendment decreased N2O by more than 31% under CF, while it had no effect on N2O emissions under BF. Thus BF was effective at maintaining a high maize yield and reducing greenhouse gases emissions. If combined with biochar amendment, BF would be a good way of sustaining low carbon agriculture in rainfed areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.04.088DOI Listing

Publication Analysis

Top Keywords

maize yield
16
greenhouse gases
12
biochar amendment
12
maize productivity
8
balanced fertilization
8
gases emissions
8
n2o emissions
8
maize
7
biochar
6
emissions
5

Similar Publications

Ca and Mg are essential micronutrients for plant growth, and they play a crucial role in plant development and responses to adversity by influencing the activities of endogenous hormones and antioxidant enzymes. However, the specific mechanisms through which calcium (Ca) and magnesium (Mg) regulate the kernel sugar content through endogenous hormones and antioxidant enzymes remain unclear. In this study, we analyzed the impact of Ca and Mg on the physiology of maize leaves and kernel quality by determining the activities of antioxidant enzymes and endogenous hormones, and the kernel sugar content in maize leaves when supplemented with different levels of Ca and Mg.

View Article and Find Full Text PDF

To ensure food and feed security, modern maize hybrids must not only perform well under changing climate conditions but also consistently achieve higher and stable yields, exhibit maximum tolerance to stress factors, and produce high quality grains. In a study conducted in 2022 and 2023, 50 maize hybrids were developed from crosses of five elite (highly productive) inbred lines and ten lines possessing favorable genes for carotenoid content. These hybrids were tested under particularly unfavorable conditions for maize cultivation.

View Article and Find Full Text PDF

Response of Crop Yield and Productivity Contribution Rate to Long-Term Different Fertilization in Northeast of China.

Plants (Basel)

January 2025

Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin 150086, China.

To reveal the changes in crop yield and contribution rate of black soil productivity under long-term different fertilization conditions in black soil areas and to find the important significance of fertilization for sustainable and stable crop yield, high yield, and improving the contribution rate of black soil nutrients. Based on the long-term experiment of black soil fertility in Harbin, the Ministry of Agriculture and Rural Affairs, under the maize-wheat-soybean rotation system, crop yield, sustainability and stability of yield, the contribution rate of black soil productivity, and natural nutrient supply capacity under 10 fertilization treatments (CK, NP, NK, PK, NPK, M, MNP, MNK, MPK, and MNPK) were analyzed. Results showed that, compared with the treatment of chemical fertilizer, yields of maize, wheat, and soybeans increased under treatment of organic fertilizer combined with chemical fertilizer, among which the yields of maize and wheat changed the most.

View Article and Find Full Text PDF

A Zinc Polyphenolic Compound Increases Maize Resistance Against Infection by .

Plants (Basel)

December 2024

Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.

Maize leaf blight (MLB), caused by the fungus , is an important disease affecting maize production. In order to minimize the use of fungicides in agriculture, nutrient-based resistance inducers may become a promising alternative to manage MLB. The goal of this study was to investigate the potential of Semia (zinc (20%) complexed with a plant-derived pool of polyphenols (10%)) to hamper the infection of maize leaves by by analyzing their photosynthetic performance and carbohydrate and antioxidative metabolism, as well as the expression of defense-related genes.

View Article and Find Full Text PDF

This study investigated soil fungal biodiversity in wheat-based crop rotation systems on Chernozem soil within the Pannonian Basin, focusing on the effects of tillage, crop rotation, and soil properties. Over three years, soil samples from ten plots were analyzed, revealing significant fungal diversity with Shannon-Wiener diversity indices ranging from 1.90 in monoculture systems to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!