Global gene deregulations in FASN silenced retinoblastoma cancer cells: molecular and clinico-pathological correlations.

J Cell Biochem

L and T Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India.

Published: November 2015

Activation of fatty acid synthase (FASN) enzyme in the de novo lipogenic pathway has been reported in various cancers including retinoblastoma (RB), a pediatric ocular cancer. The present study investigates lipogenesis-dependent survival of RB cancer cells and the associated molecular pathways in FASN silenced RB cells. The siRNA-mediated FASN gene knockdown in RB cancer cells (Y79, WERI RB1) repressed FASN mRNA and protein expressions, and decreased cancer cell viability. Global gene expression microarray analysis was performed in optimized FASN siRNA transfected and untransfected RB cells. Deregulation of various downstream cell signaling pathways such as EGFR (n = 55 genes), TGF-beta (n = 45 genes), cell cycle (n = 41 genes), MAPK (n = 39 genes), lipid metabolism (n = 23 genes), apoptosis (n = 21 genes), GPCR signaling (n = 21 genes), and oxidative phosporylation (n = 18 genes) were observed. The qRT-PCR validation in FASN knockdown RB cells revealed up-regulation of ANXA1, DAPK2, and down-regulation of SKP2, SREBP1c, RXRA, ACACB, FASN, HMGCR, USP2a genes that favored the anti-cancer effect of lipogenic inhibition in RB. The expression of these genes in primary RB tumor tissues were correlated with FASN expression, based on their clinico-pathological features. The differential phosphorylation status of the various PI3K/AKT pathway proteins (by western analysis) indicated that the FASN gene silencing indeed mediated apoptosis in RB cells through the PI3K/AKT pathway. Scratch assay clearly revealed that FASN silencing reduced the invading property of RB cancer cells. Dependence of RB cancer cells on lipid metabolism for survival and progression is implicated. Thus targeting FASN is a promising strategy in RB therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.25217DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
fasn
12
genes
10
cells
9
global gene
8
fasn silenced
8
fasn gene
8
lipid metabolism
8
n = 21 genes
8
pi3k/akt pathway
8

Similar Publications

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.

Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!