The aim of the study is to investigate the histopathologic and cartilage mass changes in hyperbaric oxygen (HBO)-treated auricular cartilage grafts either crushed or fascia wrapped in a rabbit model. This is a prospective, controlled experimental study. Sixteen rabbits were randomly allocated into control (n = 8) and treatment groups (n = 8). Each group was further grouped as crushed cartilage (n = 4) and fascia wrapped crushed cartilage (n = 4). The eight rabbits in the treatment group had HBO once daily for 10 days as total of 10 sessions. The mass of cartilage, cartilage edge layout, structural layout, staining disorders of the chondroid matrix, necrosis, calcification besides bone metaplasia, chronic inflammation in the surrounding tissues, fibrosis, and increased vascularity were evaluated in the hematoxylin and eosin (H&E)-stained sections. Fibrosis in the surrounding tissue and cartilage matrix was evaluated with Masson's trichrome stain. The toluidine blue staining was used to evaluate loss of metachromasia in matrix. The prevalence of glial fibrillary acidic protein (GFAP) staining in chondrocytes was also evaluated. Although the remaining amount of cartilage mass after implantation does not show a significant difference between the control and the study group (p = 0.322, p <0.05).The difference between control and study group in terms of positive staining with GFAP was statistically significant (p = 0.01, p <0.05). Necrosis and loss of matrix metachromasia were significantly low in the study group compared with control group (p = 0.001, p = 0.006, p <0.05). HBO therapy did not have significant effect on the mass of rabbit auricular cartilage graft. HBO therapy significantly reduced loss of metachromasia, necrosis, and GFAP staining in the auricular cartilage grafts of the animal model.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0035-1549041DOI Listing

Publication Analysis

Top Keywords

cartilage
9
auricular cartilage
8
cartilage grafts
8
rabbit model
8
cartilage mass
8
fascia wrapped
8
crushed cartilage
8
cartilage n = 4
8
changes histopathology
4
mass
4

Similar Publications

Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.

View Article and Find Full Text PDF

Current Concepts and Clinical Applications in Cartilage Tissue Engineering.

Tissue Eng Part A

January 2025

Department of Orthopaedics, Massachusetts General Brigham, Boston, MA, USA.

Cartilage injuries are extremely common in the general population, and conventional interventions have failed to produce optimal results. Tissue engineering (TE) technology has been developed to produce neocartilage for use in a variety of cartilage-related conditions. However, progress in the field of cartilage TE has historically been difficult due to the high functional demand and avascular nature of the tissue.

View Article and Find Full Text PDF

Study Design: Genome-wide association study (GWAS) meta-analysis with downstream analyses.

Objective: To explore the genetic architecture of chronic low back pain (cLBP) and identify underlying biological mechanisms that contribute to its development.

Summary Of Background Data: Chronic low back pain is prevalent and debilitating, with many cases having no identifiable biological cause.

View Article and Find Full Text PDF

Background: Rheumatoid Arthritis (RA), a chronic inflammatory autoimmune illness, is characterized by synovitis, progressive joint damage, and bone erosion. Even though the potent drugs available contain biologics, several patients fail to react to them or cause hostile effects.

Objectives: Betanin (BTN), the betacyanin present in the red beetroot, has antioxidant, antiinflammatory, and apoptotic properties.

View Article and Find Full Text PDF

Objective: Osteoarthritis is a chronic, debilitating disease that causes long-term pain and immobility. Germline deletion of Phlpp1 or administration of small molecules that inhibit Phlpp1 prevents post-traumatic osteoarthritis (PTOA) in mice. However, the chondrocyte-intrinsic role of Phlpp1 in PTOA progression is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!