Catalytic co-pyrolysis of particle board, a waste wood biomass, and polypropylene (PP), a petroleum-based plastic, was carried out with a mixing ratio of 1:1 over a representative mesoporous material, Al-MCM-41 catalyst. The Si/Al ratios of the Al-MCM-41 catalysts were controlled at 20 and 80 to investigate the effect of the acidity of the catalyst. The characterization of the catalyst was performed by X-ray diffraction, N2 adsorption-desorption, and NH3 temperature-programmed desorption. The catalytic pyrolysis of the particle board showed a higher yield of gas and lower yield of oil than the non-catalytic pyrolysis. In oil, the concentration of levoglucosan decreased, and those of furans, furanones, cyclopentanones, aromatics, and light phenolics increased. In the case of the co-pyrolysis of the particle board and PP, C10-C17 products corresponding to the diesel range greatly increased and resulted in an improvement of the bio-oil quality. This suggests that PP is decomposed on the acidic sites of the Al-MCM-41 catalyst, resulting in an increased production of hydrocarbons in the range of diesel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2014.9973 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!