We developed a simple and highly efficient method for delivery from titanium (Ti) surfaces using albumin nanoparticle carriers. A Ti disc with a resorbable blasting media surface was used as a metal implant with a localized drug delivery structure. Human serum albumin (HSA) nanoparticles loaded with chlorhexidine (CHX) diacetate salt hydrate as the model drug were fabricated using a desolvation technique. The CHX-loaded HSA nanoparticles produced were cross linked with glutaraldehyde (GA). The nanoparticles were pre-coated with positively-charged polyethylenimine (PEI) molecules and then immobilized via electrical interactions on the negatively charged Ti disc surface. Our results suggested that the PEI-coated HSA nanoparticles loaded with CHX (PEI-CHX-HSA) were incorporated successfully and well-dispersed on the Ti disc surfaces. The agar diffusion test on the Ti surface treated with PEI-CHX-HSA nanoparticles showed a larger growth inhibition zone of Streptococcus mutans versus the control Ti surface, suggesting that this innovative delivery platform imparts potent antibacterial activity to the Ti surface. Thus, CHX, which inhibits the growth of oral bacteria, can be efficiently incorporated onto Ti surfaces by using HSA nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2014.9934 | DOI Listing |
J Med Chem
January 2025
Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111Budapest, Hungary.
The binding ability of human serum albumin (HSA) on active pharmaceutical ingredients (APIs) is one of the most important parameters in the early stages of drug discovery. In this study, an immobilized HSA-based tool was developed for the rapid and easy in vitro screening of API binding. The work explored the serious incompleteness in the identification of HSA used for in vitro screening published in the last five years.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Plastics and Polymer Engineering, School of Engineering, Plastindia International University, Vapi-396193, Gujarat, India.
This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.
View Article and Find Full Text PDFToxicol Rep
June 2025
Era College of Pharmacy, Era University, Sarfarajgung, Lucknow-Hardoi Road, Lucknow, Uttar Pradesh, India.
Copper (Cu) dysregulation, often stemming from ATP7B gene mutations, exacerbates neurological disorders like Huntington's, Alzheimer's, and Parkinson's diseases. Monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA) shows promise in mitigating Cu induced neurotoxicity by chelating intracellular Cu ions, reducing oxidative stress, and restoring antioxidant enzyme function. However, challenges such as poor bioavailability hinder its therapeutic efficacy.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().
View Article and Find Full Text PDFMol Pharm
January 2025
Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
Developing low-toxicity, high-efficacy, and fast-acting strategies to manage acute liver injury (ALI) is critical due to its rapid progression and potential for severe outcomes. Curcumin (CUR) has shown promise in ALI therapy due to its ability to modulate the inflammatory microenvironment by scavenging reactive oxygen species (ROS). Nevertheless, CUR is highly hydrophobic limiting its bioavailability and effective in vivo transport, which hinders its further application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!