Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece.

Sci Total Environ

Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa and Vas. Pavlou, 15236, P. Penteli, Athens, Greece; Environmental Chemical Processes laboratory (ECPL), Department of Chemistry, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece. Electronic address:

Published: September 2015

To identify the sources of aerosols in Greater Athens Area (GAA), a total of 1510 daily samples of fine (PM 2.5) and coarse (PM 10-2,5) aerosols were collected at a suburban site (Penteli), during a five year period (May 2008-April 2013) corresponding to the period before and during the financial crisis. In addition, aerosol sampling was also conducted in parallel at an urban site (Thissio), during specific, short-term campaigns during all seasons. In all these samples mass and chemical composition measurements were performed, the latest only at the fine fraction. Particulate organic matter (POM) and ionic masses (IM) are the main contributors of aerosol mass, equally contributing by accounting for about 24% of the fine aerosol mass. In the IM, nss-SO4(-2) is the prevailing specie followed by NO3(-) and NH4(+) and shows a decreasing trend during the 2008-2013 period similar to that observed for PM masses. The contribution of water in fine aerosol is equally significant (21 ± 2%), while during dust transport, the contribution of dust increases from 7 ± 2% to 31 ± 9%. Source apportionment (PCA and PMF) and mass closure exercises identified the presence of six sources of fine aerosols: secondary photochemistry, primary combustion, soil, biomass burning, sea salt and traffic. Finally, from winter 2012 to winter 2013 the contribution of POM to the urban aerosol mass is increased by almost 30%, reflecting the impact of wood combustion (dominant fuel for domestic heating) to air quality in Athens, which massively started in winter 2013.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2015.04.022DOI Listing

Publication Analysis

Top Keywords

aerosol mass
12
chemical composition
8
fine aerosol
8
winter 2013
8
aerosol
6
fine
5
mass
5
sources atmospheric
4
atmospheric aerosol
4
aerosol long-term
4

Similar Publications

Experimental data on aerosols exhaled into the environment from different wind musical instruments.

Sci Rep

January 2025

Bioaraba, New Technologies and Information Systems in Health Research Group, Vitoria- Gasteiz, Spain.

Brass bands that include wind instruments are heavily affected by rules established during the pandemic. The aim of this experimental work was to assess the aerosols emitted through different wind instruments. The Aerodynamic Particle Sizer (APS) was used to measure the aerosols emitted and transmit those characteristics to a database.

View Article and Find Full Text PDF

Strong emissions and aerosol formation potential of higher alkanes from diesel vehicles.

J Hazard Mater

December 2024

College of Environment and Climate, Institute for Environmental and Climate Research, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, 51143, China.

Higher alkanes are a major class of intermediate volatile organic compounds (IVOCs) emitted by vehicles, which have been considered as important precursors of secondary organic aerosol (SOA) in urban area. Dynamometer experiments were conducted to characterize emissions from gasoline and diesel vehicles in China. Three types of higher alkanes, namely acyclic, cyclic, and bicyclic alkanes, were explicitly quantified through the novel proton transfer reaction time-of-flight mass spectrometer with NO ionization (NO PTR-ToF-MS) with time response of 1 second.

View Article and Find Full Text PDF

Dicarboxylic acids (DCAs), with their deliquescence and hygroscopic nature, can function as cloud condensation nuclei (CCN) and ice nuclei (IN), affecting rainfall patterns. DCA analysis can serve as organic molecular markers for anthropogenic and biogenic sources. Very few studies deal with the optimization of the protocol for qualitative and quantitative analysis of DCAs using gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Thermogravimetry coupled with simultaneous evolved gas analysis by mass spectrometry was used for discerning organic compounds released during the thermal degradation of paint whose chemical compositions are not readily accessible. Thermogravimetric analyses up to 600°C revealed distinct degradation patterns under inert and oxidative conditions. Significant degradation of paint initiates at around 360°C and concludes at 500°C in a nitrogen atmosphere.

View Article and Find Full Text PDF

Near Real-Time Measurement of Airborne Carbon Nanotubes with Metals Using Raman-Spark Emission Spectroscopy.

Appl Spectrosc

January 2025

Jiangsu Engineering Research Center for Dust Control and Occupational Protection, China University of Mining and Technology, Xuzhou, Jiangsu, China.

We present a near real-time measurement method that combines Raman and spark emission spectroscopy to quantitatively analyze the molecular structure of airborne single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), as well as detect toxic metals within CNTs. A corona-based aerosol microconcentrator was used for airborne CNTs sampling to enhance the measurement accuracy and sensitivity. The intensity of the characteristic Raman bands of CNTs and atomic emission lines of metals exhibited a linear relationship with the analyte mass, yielding high coefficient values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!