Thymol, a bioactive monoterpene isolated from Thymus vulgaris, has displayed inspiring neuroprotective properties. The present study was designed to evaluate the antidepressant-like effects of thymol on a chronic unpredictable mild stress (CUMS) model of depression in mice and explore the underlying mechanisms. It was observed that thymol treatment (15 mg/kg and 30 mg/kg) significantly reversed the decrease of sucrose consumption, the loss of body weight, the reduction of immobile time in the tail suspension tests (TST) and forced swimming tests (FST) induced by CUMS paradigm. The levels of norepinephrine (NE) and serotonin (5-HT) in the hippocampus decreased in the CUMS-treated mice. Chronic treatments with thymol significantly restored the CUMS-induced alterations of monoamine neurotransmitters in the hippocampus. Our results further demonstrated that thymol administration negatively regulated the induction of proinflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in CUMS mice. Furthermore, thymol inhibited the activation of nod-like receptor protein 3 (NLRP3) inflammasome and its adaptor, and subsequently decreased the expression of caspase-1. In sum, our findings suggested that thymol played a potential antidepressant role in CUMS mice model through up-regulating the levels of central neurotransmitters and inhibiting the expressions of proinflammatory cytokines, which might provide potential for thymol in the light of opening up new therapeutic avenues for depression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2015.04.052 | DOI Listing |
J Chem Inf Model
January 2025
Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
Essential oils (EOs) exhibit a broad spectrum of biological activities; however, their clinical application is hindered by challenges, such as variability in chemical composition and chemical/physical instability. A critical limitation is the lack of chemical consistency across EO samples, which impedes standardization. Despite this, evidence suggests that EOs with differing chemical profiles often display similar (micro)biological activities, raising the possibility of standardizing EOs based on their biological effects rather than their chemical composition.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
New types of metal-organic framework (MOF) materials have great potential in solving the current global dilemma on energy, environment, and medical care. Herein, based on two kinds of biomolecule-MOFs (Bio-MOFs) with favorable biocompatibility and degradation-reconstruction characteristics, we have established a self-powered muti-functional device to achieve an efficient and broad-spectrum environmental energy collection and biomedical applications. Combining Zn(II) and carnosine-based Zn-Car_MOF possessing a high piezoelectric response (d = 11.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
Deep eutectic solvents (DESs) have emerged as solubilizing media of intense interest due partly to their easily tailorable physicochemical properties. Extensive H-bonding between the constituents in a two-constituent system is the major driving force for the formation of the DES. Addition of ethanolamine (MEA), a compound having H-bonding capabilities, to the DESs composed of a terpene [menthol (Men) or thymol (Thy)] and a fatty acid [-decanoic acid (DA)] results in an unprecedented increase in dynamic viscosity due to the extensive rearrangement in the H-bonding network and other interactions within the system, while the liquid mixture still behaves as a Newtonian fluid.
View Article and Find Full Text PDFJ Mycol Med
December 2024
Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
Introduction: Nakaseomyces glabratus is considered a high priority of attention according to WHO, and also is an important yeast species due to its high rate of intrinsic/acquired resistance against fluconazole. This study aimed at the possible mechanisms of action of thymol, as the promising new antifungal agent, in N. glabratus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!