Physico-chemical factors affecting the in vitro stability of phycobiliproteins from Phormidium rubidum A09DM.

Bioresour Technol

BRD School of Biosciences, Vadtal Road, Satellite Campus, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Anand, Gujarat, India. Electronic address:

Published: August 2015

The functionality and stability of phycobiliproteins (PBPs) phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC) were investigated under various temperatures, pHs and oxidative stressors. All PBPs were thermostable up to 4-40°C; however, their concentration decreased rapidly at 60-80°C. The maximum stability of all PBPs was in the pH range 6.0-7.0. Decrease in PBPs content was found under high acidic (pH 2-4) and alkaline conditions (pH 8-12). The oxidizing agent (0.1-0.6%) showed the least effect on the stability of PBPs; however, 0.8-1.0% H2O2 caused significant loss of PBPs. Contrary to PE, PC and APC was more susceptible to an oxidizing agent. The chromophore associated with α- and β-subunit of PBPs and thus, their functionality (fluorescence) was severely affected under high temperature (60-80°C), and oxidizing agent, as well as low (2-4) and high (8-12) pH. Contrary to PC and APC, functionality of PE was surprisingly maintained even at pHs 6-12 and under oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.04.090DOI Listing

Publication Analysis

Top Keywords

oxidizing agent
12
stability phycobiliproteins
8
stability pbps
8
contrary apc
8
pbps
7
physico-chemical factors
4
factors vitro
4
stability
4
vitro stability
4
phycobiliproteins phormidium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!