Background: Medicinal plants have contributed significantly to current malaria treatment. Emergence of resistance to currently available drugs has necessitated the search for new plant-based anti-malarial agents and several plant-based, pharmacologically active anti-malarial compounds have been isolated. This study was conducted to validate the traditional usage of Echinops kebericho for treating malaria in the traditional health care system of Ethiopia.
Methods: The roots of E. kebericho were collected from Masha Woreda, Sheka Zone. After collection, the plant materials were identified by a taxonomist, dried under shade and crushed to powder for extraction. The powdered roots were extracted by maceration using 70 % ethanol. Acute toxicity study of the crude extract was carried out in Swiss albino mice. The in vivo anti-malarial activity of plant extract (200, 350 and 500 mg/kg) of E. kebericho roots against a chloroquine (CQ) sensitive strain of Plasmodium berghei strain ANKA was assessed using the four-day suppressive test procedure. Parameters such as parasitaemia, packed cell volume, body weight and survival time were then determined using standard tests.
Results: Oral administration of the ethanol extract showed significant (P<0.001) parasitaemia suppression at dose levels of 350 and 500 mg/kg in dose-related manner compared with the negative control. Five hundred mg/kg showed the highest (57.29±1.76 %) parasitaemia suppression. The survival times of P. berghei-infected mice were also increased in a dose-dependent manner but the test material did not prevent weight loss associated with increased parasitaemia. The result also showed the plant material prevented the loss in packed cell volume associated with increased parasitaemia. Its oral LD50 was found to be greater than 5,000 mg/kg, indicating its wider safety margin in mice.
Conclusion: The result revealed the ethanol extract of E. kebericho roots has anti-malarial activity against P. berghei in an animal model and lends support to the use of the plant to combat malaria in Ethiopian folk medicine. Further work is necessary to isolate, identify and characterize the active principles from the plant material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429705 | PMC |
http://dx.doi.org/10.1186/s12936-015-0716-1 | DOI Listing |
Front Biosci (Elite Ed)
November 2024
Food Science Department, Agriculture College, Basrah University, 61001 Basrah, Iraq.
Background: Flavonoids are among the most important compounds found in plants, since laboratory studies have shown them to be a daily requirement in human diets due to their various health benefits. Therefore, this study focused on extracting, purifying, and measuring the antioxidant activity of the flavonoid quercetin, which is widely found in plants and possesses a variety of biological activities, from different plant sources.
Methods: The extraction of quercetin was performed using several methods (chemical, physical, and enzymatic) and several extraction solutions (water, ethanol, and chloroform) from several plants (spinach, dill, Onion Skin, , sumac, digalkhasab chemri, and leelwi chemri).
Biomed Res Int
December 2024
Department of Biochemistry & Chemistry, Sylhet Agricultural University, Sylhet, Bangladesh.
Emerging multidrug-resistant (MDR) strains are the main challenges to the progression of new drug discovery. To diminish infectious disease-causing pathogens, new antibiotics are required while the drying pipeline of potent antibiotics is adding to the severity. Plant secondary metabolites or phytochemicals including alkaloids, phenols, flavonoids, and terpenes have successfully demonstrated their inhibitory potential against the drug-resistant pathogens.
View Article and Find Full Text PDFSci Rep
December 2024
Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural research (INRA), Avenue Ennasr, BP 415 Rabat principal, Rabat, 10090, Morocco.
The phytochemical, nutritional, and biological features of wild carob pulp from Tanzight (TN), Ait-Waada (AW), and Tizi-ghnayn (TG) in Azilal were studied. The results of the study reveal that the carob pulp examined has a low-fat level. AW had the most total sugar (78.
View Article and Find Full Text PDFFitoterapia
December 2024
Department of Chemistry, Universidade Tecnológica Federal do Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil.
This study investigated the antihyperglycemic potential of a hydroalcoholic extract from Syzygium malaccense leaves (E-SM) and isolate phenolic compounds with antioxidant and cytotoxic activities through a bioguided assay. The aim was to explore the therapeutic properties of S. malaccense in managing hyperglycemia and oxidative stress-related conditions.
View Article and Find Full Text PDFJ Food Sci
December 2024
School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
Black rice bran (BRB), a valuable byproduct from the rice milling process, possesses numerous pharmacological activities, including antioxidant potential, but information regarding highly efficient extraction methods is scarce. To enhance the extraction efficiency, ultrasonic-assisted extraction coupled with Box-Behnken design (BBD) was used in this study to maximize the total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), and antioxidant capacity of BRB extract. The BBD results showed that 57% ethanol at 50°C and pH 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!