The mitochondrion maintains and regulates its proteome with chaperones primarily inherited from its bacterial endosymbiont ancestor. Among these chaperones is the AAA+ unfoldase ClpX, an important regulator of prokaryotic physiology with poorly defined function in the eukaryotic mitochondrion. We observed phenotypic similarity in S. cerevisiae genetic interaction data between mitochondrial ClpX (mtClpX) and genes contributing to heme biosynthesis, an essential mitochondrial function. Metabolomic analysis revealed that 5-aminolevulinic acid (ALA), the first heme precursor, is 5-fold reduced in yeast lacking mtClpX activity and that total heme is reduced by half. mtClpX directly stimulates ALA synthase in vitro by catalyzing incorporation of its cofactor, pyridoxal phosphate. This activity is conserved in mammalian homologs; additionally, mtClpX depletion impairs vertebrate erythropoiesis, which requires massive upregulation of heme biosynthesis to supply hemoglobin. mtClpX, therefore, is a widely conserved stimulator of an essential biosynthetic pathway and uses a previously unrecognized mechanism for AAA+ unfoldases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467794PMC
http://dx.doi.org/10.1016/j.cell.2015.04.017DOI Listing

Publication Analysis

Top Keywords

heme biosynthesis
12
mitochondrial clpx
8
heme
5
mtclpx
5
clpx activates
4
activates key
4
key enzyme
4
enzyme heme
4
biosynthesis erythropoiesis
4
erythropoiesis mitochondrion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!