Insights into the amplification of bacterial resistance to erythromycin in activated sludge.

Chemosphere

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China.

Published: October 2015

Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.03.085DOI Listing

Publication Analysis

Top Keywords

activated sludge
20
antibiotic resistance
16
wastewater treatment
12
resistance
9
bacterial resistance
8
resistance erythromycin
8
resistance wastewater
8
total heterotrophic
8
biological treatment
8
resistant erythromycin
8

Similar Publications

Understanding pollutant-driven shifts of antibiotic resistome in activated sludge: A lab-scale study.

J Hazard Mater

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:

Non-antibiotic pollutants have been identified as contributors to the development of antibiotic resistance across various environments. Wastewater treatment plants, recognized as hotspots for antibiotic resistance genes (ARGs), have received extensive attention regarding the mechanisms driving resistance changes in activated sludge. However, the specific impacts of heavy metals and aromatic organics-common pollutants in industrial wastewater-on the resistome of activated sludge, as well as the underlying mechanisms driving these effects, remain underexplored.

View Article and Find Full Text PDF

Integrating machine learning, suspect and nontarget screening reveal the interpretable fates of micropollutants and their transformation products in sludge.

J Hazard Mater

January 2025

School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:

Activated sludge enriches vast amounts of micropollutants (MPs) when wastewater is treated, posing potential environmental risks. While standard methods typically focus on target analysis of known compounds, the identity, structure, and concentration of transformation products (TPs) of MPs remain less understood. Here, we employed a novel approach that integrates machine learning for the quantification of nontarget TPs with advanced target, suspect, and nontarget screening strategies.

View Article and Find Full Text PDF

The pulp and paper industry, a major global sector, supports economies and jobs while contributing to various products. While providing valuable products, and despite Best Available Techniques (BAT) being used, managing wastewater effectively remains a key area for developing technologies and alternatives for environmental protection. Activated sludge (AS) systems are commonly used for effluent treatment, where microorganisms composition influences reactor efficiency.

View Article and Find Full Text PDF

The aim of this study was to reveal the microbial and kinetic impacts of acute and chronic exposure to one of the frequently administered antibiotics, i.e., sulfamethoxazole, on an activated sludge biomass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!