Translocation of uranium from water to foodstuff while cooking.

J Hazard Mater

DST Unit of Nanoscience (DST UNS), and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.

Published: October 2015

The present work report the unusual uranium uptake by foodstuff, especially those rich in carbohydrates like rice when they are cooked in water, contaminated with uranium. The major staple diet in South Asia, rice, was chosen to study its interaction with UO2(2+), the active uranium species in water, using inductively coupled plasma mass spectrometry. Highest uptake limit was checked by cooking rice at very high uranium concentration and it was found to be good scavenger of uranium. To gain insight into the mechanism of uptake, direct interaction of UO2(2+) with monosaccharides was also studied, using electrospray ionization mass spectrometry taking mannose as a model. The studies have been done with dissolved uranium salt, uranyl nitrate hexahydrate (UO2(NO3)2·6H2O), as well as the leachate of a stable oxide of uranium, UO2(s), both of which exist as UO2(2+) in water. Among the eight different rice varieties investigated, Karnataka Ponni showed the maximum uranium uptake whereas unpolished Basmati rice showed the minimum. Interaction with other foodstuffs (potato, carrot, peas, kidney beans and lentils) with and without NaCl affected the extent of chemical interaction but was not consistent with the carbohydrate content. Uranium interaction with D-mannose monitored through ESI-MS, under optimized instrumental parameters, identified the peaks corresponding to uranyl adduct with mannose monomer, dimer and trimer and the species were confirmed by MS/MS studies. The product ion mass spectra showed peaks illustrating water loss from the parent ion as the collision energy was increased, an evidence for the strong interaction of uranium with mannose. This study would constitute the essential background for understanding interaction of uranium with various foods. Extension of this work would involve identification of foodstuff as green heavy metal scavengers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2015.04.041DOI Listing

Publication Analysis

Top Keywords

uranium
11
uranium uptake
8
interaction uo22+
8
mass spectrometry
8
interaction uranium
8
interaction
7
water
5
rice
5
translocation uranium
4
uranium water
4

Similar Publications

Specific Enrichment of Carrying Microorganisms with Nitrogen Fixation and Dissimilatory Nitrate Reduction Function Enhances Arsenic Methylation in Plant Rhizosphere Soil.

Environ Sci Technol

January 2025

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China.

Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of , a potential As hyperaccumulator. was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment.

View Article and Find Full Text PDF

The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I), iodate (IO), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior.

View Article and Find Full Text PDF

Selective Crystallization Separation of Uranium(VI) Complexes from Lanthanides.

Inorg Chem

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.

The limited availability of uranium (U) resources poses significant challenges to the advancement of nuclear energy. Recycling uranium from spent fuel is critical, but the coexistence of lanthanides (Ln) complicates the extraction process significantly. Here, we present an N/O ligand, ()-'-(pyridin-2-ylmethylene) picolinohydrazide (), designed for the selective recovery of U(VI) over Ln(III/IV) in acidic environments.

View Article and Find Full Text PDF

Within the framework of surface-adsorbate interactions relevant to chemical reactions of spent nuclear fuel, the study of actinide oxide systems remains one of the most challenging tasks at both the experimental and computational levels. Consequently, our understanding of the effect of their unique electronic configurations on surface reactions lags behind that of d-block oxides. To investigate the surface properties of this system, we present the first infrared spectroscopy analysis of carbon monoxide (CO) interaction with a monocrystalline actinide oxide, UO(111).

View Article and Find Full Text PDF

Development of an automated microfluidic system for actinide separation and analysis.

J Chromatogr A

December 2024

Dalton Nuclear Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Department of Mechanical, Aerospace & Civil Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Mass spectroscopy and microfluidic technology, when combined, offer significant advantages in radiochemical analysis sample volume and cost reduction. A microfluidic device designed for efficiency has been developed. This device separates uranium from key trace elements by utilising UTEVA® chromatographic resins and nitric acid solutions of different concentrations for adsorption and recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!