Efficient soluble expression of active recombinant human cyclin A2 mediated by E. coli molecular chaperones.

Protein Expr Purif

Institute for Research and Technology-Thessaly (I.RE.TE.TH.) Centre for Research & Technology Hellas (CE.R.TH.), 95 Dimitriados & Pavlou Mela Street, GR 38333, Volos, Greece; Laboratory of Biochemistry, Faculty of Veterinary Science, University of Thessaly, GR-43100 Karditsa, Greece. Electronic address:

Published: September 2015

Bacterial expression of human proteins continues to present a critical challenge in protein crystallography and drug design. While human cyclin A constructs have been extensively characterized in complex with cyclin dependent kinase 2 (CDK2), efforts to express the monomeric human cyclin A2 in Escherichia coli in a stable form, without the kinase subunit, have been laden with technical difficulties, including solubility, yield and purity. Here, optimized conditions are described with the aim of generating for first time, sufficient quantities of human recombinant cyclin A2 in a soluble and active form for crystallization and ligand characterization purposes. The studies involve implementation of a His-tagged heterologous expression system under conditions of auto-induction and mediated by molecular chaperone-expressing plasmids. A high yield of human cyclin A2 was obtained in natively folded and soluble form, through co-expression with groups of molecular chaperones from E. coli in various combinations. A one-step affinity chromatography method was utilized to purify the fusion protein products to homogeneity, and the biological activity confirmed through ligand-binding affinity to inhibitory peptides, representing alternatives for the key determinants of the CDK2 substrate recruitment site on the cyclin regulatory subunit. As a whole, obtaining the active cyclin A without the CDK partner (referred to as monomeric in this work) in a straightforward and facile manner will obviate protein--production issues with the CDK2/cyclin A complex and enable drug discovery efforts for non-ATP competitive CDK inhibition through the cyclin groove.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456239PMC
http://dx.doi.org/10.1016/j.pep.2015.01.013DOI Listing

Publication Analysis

Top Keywords

human cyclin
16
cyclin
9
molecular chaperones
8
human
6
efficient soluble
4
soluble expression
4
expression active
4
active recombinant
4
recombinant human
4
cyclin mediated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!