Cytosine modifications in myeloid malignancies.

Pharmacol Ther

Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.

Published: August 2015

Aberrant DNA methylation is a hallmark of many cancers, including the myeloid malignancies acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). The discovery of TET-mediated demethylation of 5-methylcytosine (5mC) and technological advancements in next-generation sequencing have permitted the examination of other cytosine modifications, namely 5-hydroxymethylcytosine (5hmC), in these myeloid malignancies on a genome-wide scale. Due to the prominence of mutations in epigenetic modifiers that can influence cytosine modifications in these disorders, including IDH1/2, TET2, and DNMT3A, many recent studies have evaluated the relative levels, distribution, and functional consequences of cytosine modifications in leukemic cells. Furthermore, several therapies are being used to treat AML and MDS that target various proteins within the cytosine modification pathway in an effort to revert the abnormal epigenetic patterns that contribute to the diseases. In this review, we provide an overview of cytosine modifications and selected technologies currently used to distinguish and analyze these epigenetic marks in the genome. Then, we discuss the role of mutant enzymes, including DNMT3A, TET2, IDH1/2, and the transcription factor, WT1, in disrupting normal patterns of 5mC and 5hmC in AML and MDS. Finally, we describe several therapies, both standard, front-line treatments and new drugs in clinical trials, aimed at inhibiting the proteins that ultimately lead to aberrant cytosine modifications in these diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharmthera.2015.05.002DOI Listing

Publication Analysis

Top Keywords

cytosine modifications
24
myeloid malignancies
12
aml mds
8
cytosine
7
modifications
5
myeloid
4
modifications myeloid
4
malignancies aberrant
4
aberrant dna
4
dna methylation
4

Similar Publications

Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes.

View Article and Find Full Text PDF

Characterization of tumor epigenetic aberrations is integral to understanding the mechanisms of tumorigenesis and provide diagnostic, prognostic, and predictive information of high clinical relevance. Among the different tumor-associated epigenetic signatures, 5 methyl-cytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the two most well-characterized DNA methylation alterations linked to cancer pathogenesis. 5hmC has a tissue-specific distribution and its abundance is subjected to changes in tumor DNA, making it a promising biomarker.

View Article and Find Full Text PDF

Background: DNA methylation (DNAm) has been shown in multiple studies to be associated with the estimated glomerular filtration rate (eGFR). However, studies focusing on Chinese populations are lacking. We conducted an epigenome-wide association study to investigate the association between DNAm and eGFR in Chinese monozygotic twins.

View Article and Find Full Text PDF

TET2-mediated 5-hydroxymethylcytosine of TXNIP promotes cell cycle arrest in systemic anaplastic large cell lymphoma.

Clin Epigenetics

January 2025

Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.

Background: 5-Hydroxymethylcytosine (5hmC) modification represents a significant epigenetic modification within DNA, playing a pivotal role in a range of biological processes associated with various types of cancer. The role of 5hmC in systemic anaplastic large cell lymphoma (ALCL) has not been thoroughly investigated. This study aims to examine the function of 5hmC in the advancement of ALCL.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!