Potential energy surface of the CO2-N2 van der Waals complex.

J Chem Phys

Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France.

Published: May 2015

Four-dimensional potential energy surface (4D-PES) of the atmospherically relevant CO2-N2 van der Waals complex is generated using the explicitly correlated coupled cluster with single, double, and perturbative triple excitation (CCSD(T)-F12) method in conjunction with the augmented correlation consistent triple zeta (aug-cc-pVTZ) basis set. This 4D-PES is mapped along the intermonomer coordinates. An analytic fit of this 4D-PES is performed. Our extensive computations confirm that the most stable form corresponds to a T-shape structure where the nitrogen molecule points towards the carbon atom of CO2. In addition, we located a second isomer and two transition states in the ground state PES of CO2-N2. All of them lay below the CO2 + N2 dissociation limit. This 4D-PES is flat and strongly anisotropic along the intermonomer coordinates. This results in the possibility of the occurrence of large amplitude motions within the complex, such as the inversion of N2, as suggested in the recent spectroscopic experiments. Finally, we show that the experimentally established deviations from the C2v structure at equilibrium for the most stable isomer are due to the zero-point out-of-plane vibration correction.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4919396DOI Listing

Publication Analysis

Top Keywords

potential energy
8
energy surface
8
co2-n2 van
8
van der
8
der waals
8
waals complex
8
intermonomer coordinates
8
surface co2-n2
4
complex four-dimensional
4
four-dimensional potential
4

Similar Publications

Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.

View Article and Find Full Text PDF

Human Papillomavirus (HPV) infection is a significant global health concern linked to various cancers, particularly cervical cancer. Timely and accurate detection of HPV is crucial for effective management and prevention strategies. Traditional laboratory-based HPV testing methods often suffer from limitations such as long turnaround times, restricted accessibility, and the need for trained personnel, especially in resource-limited settings.

View Article and Find Full Text PDF

Disturbance Robust Attitude Stabilization of Multirotors with Control Moment Gyros.

Sensors (Basel)

December 2024

Department of Aerospace Engineering, Chosun University, Gwangju 61452, Republic of Korea.

This paper presents a novel control framework for enhancing the attitude stabilization of multirotor UAVs using Control Moment Gyros (CMGs) and a Disturbance Robust Drive Law (DRDL). Due to their lightweight and compact structure, multirotor UAVs are highly susceptible to disturbances such as wind, making it challenging to achieve stable attitude control using rotor thrust alone. To address this issue, we employ CMGs to provide robust attitude control and apply Fast Terminal Sliding Mode Control (FTSMC) to ensure fast and accurate convergence within a finite time.

View Article and Find Full Text PDF

Additive Manufacturing of a Frost-Detection Resistive Sensor for Optimizing Demand Defrost in Refrigeration Systems.

Sensors (Basel)

December 2024

Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal.

This article presents the development of a resistive frost-detection sensor fabricated using Fused Filament Fabrication (FFF) with a conductive filament. This sensor was designed to enhance demand-defrost control in industrial refrigeration systems. Frost accumulation on evaporator surfaces blocks airflow and creates a thermal insulating barrier that reduces heat exchange efficiency, increasing energy consumption and operational costs.

View Article and Find Full Text PDF

UAV Trajectory Control and Power Optimization for Low-Latency C-V2X Communications in a Federated Learning Environment.

Sensors (Basel)

December 2024

Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B2K3, Canada.

Unmanned aerial vehicle (UAV)-enabled vehicular communications in the sixth generation (6G) are characterized by line-of-sight (LoS) and dynamically varying channel conditions. However, the presence of obstacles in the LoS path leads to shadowed fading environments. In UAV-assisted cellular vehicle-to-everything (C-V2X) communication, vehicle and UAV mobility and shadowing adversely impact latency and throughput.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!