Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial cell dysfunction and vascular remodeling. Normally, the endothelium forms an integral cellular barrier to regulate vascular homeostasis. During embryogenesis endothelial cells exhibit substantial plasticity that contribute to cardiac development by undergoing endothelial-to-mesenchymal transition (EndoMT). We determined the presence of EndoMT in the pulmonary vasculature in vivo and the functional effects on pulmonary artery endothelial cells (PAECs) undergoing EndoMT in vitro. Histologic assessment of patients with systemic sclerosis-associated PAH and the hypoxia/SU5416 mouse model identified the presence von Willebrand factor/α-smooth muscle actin-positive endothelial cells in up to 5% of pulmonary vessels. Induced EndoMT in PAECs by inflammatory cytokines IL-1β, tumor necrosis factor α, and transforming growth factor β led to actin cytoskeleton reorganization and the development of a mesenchymal morphology. Induced EndoMT cells exhibited up-regulation of mesenchymal markers, including collagen type I and α-smooth muscle actin, and a reduction in endothelial cell and junctional proteins, including von Willebrand factor, CD31, occludin, and vascular endothelial-cadherin. Induced EndoMT monolayers failed to form viable biological barriers and induced enhanced leak in co-culture with PAECs. Induced EndoMT cells secreted significantly elevated proinflammatory cytokines, including IL-6, IL-8, and tumor necrosis factor α, and supported higher immune transendothelial migration compared with PAECs. These findings suggest that EndoMT may contribute to the development of PAH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajpath.2015.03.019 | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
Background: Prolonged spaceflight is known to cause vascular deconditioning and remodeling. Tail suspension, a widely used spaceflight analog, is reported to result in vascular remodeling of rats. However, little is known about the cellular atlas of the heterogeneous cells of CA and FA from hindlimb-unloaded rats.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.
View Article and Find Full Text PDFRegen Biomater
November 2024
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
The hypoxia microenvironment post-myocardial infarction (MI) critically disturbs cellular metabolism and inflammation response, leading to scarce bioenergy supplying, prolonged inflammatory phase and high risk of cardiac fibrosis during cardiac restoration. Herein, an injectable hydrogel is prepared by Schiff base reaction between fructose-1,6-bisphosphate (FBP)-grafted carboxymethyl chitosan (CF) and oxidized dextran (OD), followed by loading fucoidan-coated baicalin (BA)-encapsulated zein nanoparticles (BFZ NPs), in which immunoregulatory and metabolism improving functions are integrally included. The grafted FBP serves to enhance glycolysis and provide more bioenergy for cardiomyocytes survival under hypoxia microenvironment, and elevating cellular antioxidant capacity pentose phosphate pathway.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China. Electronic address:
Kawasaki disease (KD), characterized by systematic vasculitis, is a leading cause of pediatric heart disease. Although recent studies have highlighted the critical role of deubiquitinases in vascular pathophysiology, their specific contribution to KD remains largely unknown. Herein, we investigated the function of the deubiquitinase USP7 in both KD patients and a CAWS-induced KD murine model.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China.
Emerging studies have reported the vital role of histone modification in the dysfunction of pulmonary vascular endothelial cells, which acts as the key reason to drive the hypoxia-induced pulmonary vascular remodeling and pulmonary hypertension (PH). This study aims to investigate the role of a histone 3 lysine 9 (H3K9) methyltransferase, SET domain bifurcated 1 (SETDB1), in hypoxia-induced functional and phenotypical changes of pulmonary vascular endothelial cells. Primarily cultured rat pulmonary microvascular endothelial cells (PMVECs) were used as cell model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!