Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Development of novel agents to eradicate liver cancer cells is required for treatment of HCC. Gartanin, a xanthone-type compound isolated from mangosteen, is known to possess potent antioxidant, anti-inflammatory, antifungal and antineoplastic properties. In the present study, we investigated the cytotoxic effect of gartanin on HCC and explored the cell death mechanism. We showed that gartanin induced both the extrinsic and intrinsic apoptotic pathways, which were interconnected by caspase-8, -9 and -3 activation. We also provided convincing evidence that gartanin induced autophagy in various cancer cells, as demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Additionally, gartanin induced the formation of typical autophagosomes and autolysosomes and enhanced the degradation rate of intracellular granule(s), including mitochondria. Notably, gartanin-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5). These findings suggested that gartanin-mediated autophagic response protected against eventual cell death induced by gartanin. Moreover, gartanin treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor (SP600125) inhibited autophagy yet promoted gartanin-induced apoptosis, indicating a key requirement of the JNK-Bcl-2 pathway in the activation of autophagy by gartanin. Taken together, our data suggested that the JNK-Bcl-2 pathway was the critical regulator of gartanin-induced protective autophagy and a potential drug target for chemotherapeutic combination.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2015.3948DOI Listing

Publication Analysis

Top Keywords

cell death
12
gartanin induced
12
gartanin
9
cancer cells
8
jnk-bcl-2 pathway
8
autophagy
6
gartanin induces
4
induces autophagy
4
autophagy jnk
4
jnk activation
4

Similar Publications

Analyzing the cell interface is of paramount importance in understanding how cells interact and communicate with other cells, but an advanced analytical platform that can process complex and networked interactions between cell surface ligands and receptors is lacking. Herein, we developed the cell-interface-deciphering lipid nanotablet (CID-LNT) for multiplexed real-time cell analysis. LNT is a nanoparticle-tethered lipid bilayer chip where freely diffusing plasmonic nanoparticles induce scattering signal changes.

View Article and Find Full Text PDF

The unexpected PD-L1 suppression function of celery-derived extracellular vesicles improves lung cancer chemotherapy efficacy.

Extracell Vesicles Circ Nucl Acids

November 2024

State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.

The article explores celery-derived extracellular vesicles (CDEVs), characterized by high cellular uptake, low immunogenicity, and high stability, as a therapeutic strategy for antitumor nanomedicines. The methods employed in this study include cell experiments such as co-culture, Western Blot, and flow cytometry. experiments were conducted in C57BL/6 tumor-bearing mice subcutaneously injected with Lewis lung carcinoma (LLC) cells.

View Article and Find Full Text PDF

Engineered extracellular vesicles as "supply vehicles" to alleviate type 1 diabetes.

Extracell Vesicles Circ Nucl Acids

November 2024

The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, Guangdong, China.

Recent findings have indicated that the deficiency of inhibitory programmed cell death ligand 1 (PD-L1) and galectin-9 (Gal-9) in pancreatic β-cells is associated with the progression of type 1 diabetes (T1D). This suggests that exogenous PD-L1 and Gal-9 may have promising potential as therapeutics for the treatment of T1D. In light of these reports, a recent work investigated the potential of artificial extracellular vesicles (aEVs) with the presentation of PD-L1 and Gal-9 ligands (PD-L1-Gal-9 aEVs) as a treatment for T1D, with the findings published in .

View Article and Find Full Text PDF

Severe cases of COVID-19 are associated with immune responses that lead to a surge in inflammatory molecules, resulting in multi-organ failure and death. This significant increase in inflammatory factors is triggered by viral proteins. Open reading frame 8 (ORF8) has received particular attention as a unique accessory protein of SARS-CoV-2.

View Article and Find Full Text PDF

Sepsis is a serious and life-threatening condition, which can lead to organ failure and death clinically. Abnormally increased cell-free DNA (cfDNA) and inflammatory cytokines are involved in the development and progression of sepsis. Thus, cfDNA clearance and down-regulation of inflammatory factors are essential for the effective treatment of sepsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!