Light-induced retinal injury is clinically and experimentally well-documented. It may be categorized into three types: Photothermal, photomechanical and photochemical injuries. To date, the variation in the hsa-miR-183/96/182 cluster and its potential target genes in human primary retinal pigment epithelial (RPE) cells, following visible light exposure, has not been reported. In the present study, RPE cells were exposed to 4 h of constant visible light. The expression of the hsa-miR-183/96/182 cluster was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and its potential target genes were investigated. Additionally, hsa-miR-183, hsa-miR-96, hsa-miR-182 and has-miR-183/96/182 mimics were designed and synthesized in vitro, and transfected into the RPE cells. Subsequently, the expression of brain-derived neurotrophic factor (BDNF) mRNA and protein was measured, using RT-qPCR and western blotting, respectively. The regulation of miRNAs to the BDNF gene were then validated using a dual luciferase reporter gene assay system. The expression of hsa-miR-183, hsa-miR-96 and hsa-miR-182 significantly increased in RPE cells following 4 h of visible light exposure, compared with RPE cells that had been exposed to dark conditions (P<0.01). Following RPE cell transfection with mimics, BDNF mRNA and protein expression in the RPE cells was significantly downregulated compared with control RPE cells (P<0.05, P<0.01, respectively). Similarly, the ratio of Renilla luciferase/firefly luciferase significantly decreased in the RPE cells of the mimic + wild type (WT) group compared with cells of the psiCHECK(TM)-2 (a vector lacking the sequence of the BDNF gene), wild type and mimic + mutation groups (P<0.05, P<0.01). The present study suggests that BDNF is a target gene of the has-miR-183-96-182 cluster in RPE cells. The present study suggests an underlying protective mechanism against retinal light injury and may provide a novel target for the prevention and treatment of light-induced retinal injury.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2015.3736DOI Listing

Publication Analysis

Top Keywords

rpe cells
20
visible light
16
cells visible
12
light exposure
12
brain-derived neurotrophic
8
neurotrophic factor
8
retinal pigment
8
pigment epithelial
8
hsa-mir-183/96/182 cluster
8
potential target
8

Similar Publications

Distributed representations of temporally accumulated reward prediction errors in the mouse cortex.

Sci Adv

January 2025

Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore.

Reward prediction errors (RPEs) quantify the difference between expected and actual rewards, serving to refine future actions. Although reinforcement learning (RL) provides ample theoretical evidence suggesting that the long-term accumulation of these error signals improves learning efficiency, it remains unclear whether the brain uses similar mechanisms. To explore this, we constructed RL-based theoretical models and used multiregional two-photon calcium imaging in the mouse dorsal cortex.

View Article and Find Full Text PDF

DNA-Dependent Protein Kinase Catalytic Subunit Prevents Ferroptosis in Retinal Pigment Epithelial Cells.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.

Purpose: The purpose of this study was to investigate the activated core kinases involved in the DNA damage responses (DDR) during ferroptosis of retinal pigment epithelial (RPE) cells in vitro and their regulatory effects on ferroptosis.

Methods: Ferroptosis was induced by erastin in induced RPE (iRPE) cells derived from human umbilical cord mesenchymal stem cells (hUCMSCs), hUCMSCs, and induced pluripotent stem cell-derived RPE (iPSC-RPE) cells. CCK8 was employed to measure the cell viability.

View Article and Find Full Text PDF

Background: Uveal melanoma (UM) is the most common intraocular tumor in adults, arises either de novo from normal choroidal melanocytes (NCMs) or from pre-existing nevi that stem from NCMs and are thought to harbor UM-initiating mutations, most commonly in GNAQ or GNA11. However, there are no commercially available NCM cell lines, nor is there a detailed protocol for developing an oncogene-mutated CM line (MutCM) to study UM development. This study aimed to establish and characterize premalignant CM models from human donor eyes to recapitulate the cell populations at the origin of UM.

View Article and Find Full Text PDF

Golgi apparatus (GA) and endoplasmic reticulum (ER) are two of the interesting subcellular organelles that are critical for protein synthesis, folding, processing, post-translational modifications, and secretion. Consequently, dysregulation in GA and ER and cross-talk between them are implicated in numerous diseases including cancer. As a result, simultaneous visualization of the GA and ER in cancer cells is extremely crucial for developing cancer therapeutics.

View Article and Find Full Text PDF

IL-17A mediates inflammation-related retinal pigment epithelial cells injury ERK signaling pathway.

Int J Ophthalmol

January 2025

Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China.

Aim: To investigate whether interleukin-17A (IL-17A) gets involved in the mechanisms of inflammation-related retinal pigment epithelium (RPE) cells injury and its significance in age-related macular degeneration (AMD).

Mrthods: A sodium iodate (NaIO) mouse model as well as mice were established. The effects of inflammatory cytokines in RPE cells and retinal microglia before and after NaIO modeling and , were investigated using immunofluorescence, immunoprotein blotting, and quantitative real-time fluorescence polymerase chain reaction (qRT-PCR), respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!