The regulation of microtubule dynamics in cystic fibrosis (CF) epithelial cells and the consequences of reduced rates of microtubule polymerization on downstream CF cellular events, such as cholesterol accumulation, a marker of impaired intracellular transport, are explored here. It is identified that microtubules in both CF cell models and in primary CF nasal epithelial cells repolymerize at a slower rate compared with respective controls. Previous studies suggest a role for cAMP in modulating organelle transport in CF cells, implicating a role for exchange protein activated by cAMP (EPAC) 1, a regulator of microtubule elongation, as a potential mechanism. EPAC1 activity is reduced in CF cell models and in Cftr(-/-) mouse lung compared with respective non-CF controls. Stimulation of EPAC1 activity with the selective EPAC1 agonist, 8-cpt-2-O-Me-cAMP, stimulates microtubule repolymerization to wild-type rates in CF cells. EPAC1 activation also alleviates cholesterol accumulation in CF cells, suggesting a direct link between microtubule regulation and intracellular transport. To verify the relationship between transport and microtubule regulation, expression of the protein, tubulin polymerization-promoting protein, was knocked down in non-CF human tracheal (9/HTEo(-)) cells to mimic the microtubule dysregulation in CF cells. Transduced cells with short hairpin RNA targeting tubulin polymerization-promoting protein exhibit CF-like perinuclear cholesterol accumulation and other cellular manifestations of CF cells, thus supporting a role for microtubule regulation as a mechanism linking CFTR function to downstream cellular manifestation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742938 | PMC |
http://dx.doi.org/10.1165/rcmb.2014-0462OC | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!