A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differences in Lower Extremity and Trunk Kinematics between Single Leg Squat and Step Down Tasks. | LitMetric

Differences in Lower Extremity and Trunk Kinematics between Single Leg Squat and Step Down Tasks.

PLoS One

Department of Physical Therapy & Athletic Training, Boston University, Boston, MA, United States of America.

Published: April 2016

The single leg squat and single leg step down are two commonly used functional tasks to assess movement patterns. It is unknown how kinematics compare between these tasks. The purpose of this study was to identify kinematic differences in the lower extremity, pelvis and trunk between the single leg squat and the step down. Fourteen healthy individuals participated in this research and performed the functional tasks while kinematic data were collected for the trunk, pelvis, and lower extremities using a motion capture system. For the single leg squat task, the participant was instructed to squat as low as possible. For the step down task, the participant was instructed to stand on top of a box, slowly lower him/herself until the non-stance heel touched the ground, and return to standing. This was done from two different heights (16 cm and 24 cm). The kinematics were evaluated at peak knee flexion as well as at 60° of knee flexion. Pearson correlation coefficients (r) between the angles at those two time points were also calculated to better understand the relationship between each task. The tasks resulted in kinematics differences at the knee, hip, pelvis, and trunk at both time points. The single leg squat was performed with less hip adduction (p ≤ 0.003), but more hip external rotation and knee abduction (p ≤ 0.030), than the step down tasks at 60° of knee flexion. These differences were maintained at peak knee flexion except hip external rotation was only significant in the 24 cm step down task (p ≤ 0.029). While there were multiple differences between the two step heights at peak knee flexion, the only difference at 60° of knee flexion was in trunk flexion (p < 0.001). Angles at the knee and hip had a moderate to excellent correlation (r = 0.51-0.98), but less consistently so at the pelvis and trunk (r = 0.21-0.96). The differences in movement patterns between the single leg squat and the step down should be considered when selecting a single leg task for evaluation or treatment. The high correlation of knee and hip angles between the three tasks indicates that similar information about knee and hip kinematics was gained from each of these tasks, while pelvis and trunk angles were less well predicted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425598PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126258PLOS

Publication Analysis

Top Keywords

single leg
32
leg squat
24
knee flexion
24
pelvis trunk
16
knee hip
16
squat step
12
peak knee
12
60° knee
12
knee
11
differences lower
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!