Acute lymphoblastic leukaemia (ALL) is a common paediatric cancer and is among the most curable cancers. However, the acquisition of drug resistance is a significant obstacle to the achievement of favourable outcomes, and autophagy is regarded as a mechanism that underlies chemoresistance. In this study, RT-qPCR was used to measure the expression of HMGB1 and Beclin1 in bone marrow mononuclear cells. A CCK-8 test was conducted to assess cell viability. Western blot, immunofluorescence and transmission electron microscopic analyses were performed to evaluate the autophagy levels. Immunoprecipitation analysis was performed to detect protein-protein interactions in the autophagy complexes. We found that HMGB1 expression correlated with the clinical status of ALL. In vitro, anticancer agent-induced cytotoxic effects were associated with autophagy-related drug resistance, and these effects were ameliorated by FIP200 depletion or the application of autophagy inhibitors. Moreover, the Ulk1‑Atg13-FIP200 complex, which promotes HMGB1 trafficking, acted upstream of the HMGB1-Beclin1 and PI3KC3-Beclin1 complexes and played a critical role in autophagy. Targeting the transformation of autophagic complexes or HMGB1 translocation may suppress autophagy and consequently overcome chemoresistance in leukaemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijo.2015.2985 | DOI Listing |
Cell Mol Life Sci
December 2024
Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China.
Asthma is a chronic inflammatory respiratory disease characterized by recurrent breathing difficulties caused by airway obstruction and hypersensitivity. Although there is diversity in their specific mechanisms, microRNAs (miRNAs) have a significant impact on the development of asthma. Currently, the contribution of miR-130b-3p to asthma remains elusive.
View Article and Find Full Text PDFCells
November 2024
Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
High Mobility Group Box 1 (HMGB1) is a highly conserved non-histone chromatin-associated protein across species, primarily recognized for its regulatory impact on vital cellular processes, like autophagy, cell survival, and apoptosis. HMGB1 exhibits dual functionality based on its localization: both as a non-histone protein in the nucleus and as an inducer of inflammatory cytokines upon extracellular release. Pathophysiological insights reveal that HMGB1 plays a significant role in the onset and progression of a vast array of diseases, viz.
View Article and Find Full Text PDFJ Med Chem
December 2024
Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China.
High mobility group box 1 (HMGB1) is a nonhistone chromatin protein predominantly located in the nucleus. However, under pathological conditions, HMGB1 can translocate from the nucleus to the cytoplasm and subsequently be released into the extracellular space through both active secretion and passive release mechanisms. The distinct cellular locations of HMGB1 facilitate its interaction with various endogenous and exogenous factors, allowing it to perform diverse functions across a range of diseases.
View Article and Find Full Text PDFJ Inflamm Res
November 2024
Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, People's Republic of China.
Oncoimmunology
December 2024
Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
A recent in vitro study showed that pharmacological inhibition of the nuclear export receptor XPO1 suppresses oxaliplatin-induced nuclear release of HMGB1 and HMGB2, as well as the translocation of CALR to the plasma membrane. Moreover, cell-targeted-HMGB2 protein potently induced CALR exposure, even in the absence of oxaliplatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!