Nutrient-rich, turbid river plumes that are common to large lakes and coastal marine ecosystems have been hypothesized to benefit survival of fish during early life stages by increasing food availability and (or) reducing vulnerability to visual predators. However, evidence that river plumes truly benefit the recruitment process remains meager for both freshwater and marine fishes. Here, we use genotype assignment between juvenile and larval yellow perch (Perca flavescens) from western Lake Erie to estimate and compare recruitment to the age-0 juvenile stage for larvae residing inside the highly turbid, south-shore Maumee River plume versus those occupying the less turbid, more northerly Detroit River plume. Bayesian genotype assignment of a mixed assemblage of juvenile (age-0) yellow perch to putative larval source populations established that recruitment of larvae was higher from the turbid Maumee River plume than for the less turbid Detroit River plume during 2006 and 2007, but not in 2008. Our findings add to the growing evidence that turbid river plumes can indeed enhance survival of fish larvae to recruited life stages, and also demonstrate how novel population genetic analyses of early life stages can contribute to determining critical early life stage processes in the fish recruitment process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425522 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125234 | PLOS |
Environ Sci Pollut Res Int
December 2024
Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
Estuarine fronts are formed due to sharp density discontinuities resulting from the convergence of different water masses. This study, conducted in May and August of 2022 during the southwest monsoon season, focuses on assessing the role of estuarine fronts at Kuala Terengganu estuary in the accumulation of microplastics in surface seawater. The Terengganu River basin area covers approximately 4600 km and consists of two main tributaries that drain into the Kuala Terengganu estuary.
View Article and Find Full Text PDFPeerJ
December 2024
Civil Engineering Department, Federal University of Amapá, Macapá, Amapá, Brazil.
The final in natura discharge of urban domestic sewage in rivers in the Amazon is a widespread practice. In addition, there is an evident lack of knowledge about the self-depurative characteristics of the receiving water bodies in these rivers. This problem is a challenge for designing sanitary sewage system (SSS) projects in the region.
View Article and Find Full Text PDFJ Environ Sci (China)
June 2025
School of Earth Sciences, Yunnan University, Kunming 650500, China. Electronic address:
Multi-axial differential optical absorption spectroscopy (MAX-DOAS) measurements were conducted in Xishuangbanna, Yunnan, China, between November 1, 2021 and June 30, 2022 to obtain vertical distributions of formaldehyde (HCHO) and glyoxal (CHOCHO). The observations show an increase in vertical column densities (VCDs) and volume mixing ratios (VMRs) for both HCHO and CHOCHO concentrations during periods of biomass combustion. The VCDs of HCHO and CHOCHO from TROPOMI are in good agreement with the MAX-DOAS observations.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Ocean College, Zhejiang University, Zhoushan 316000, China.
This study evaluates deployment strategies for artificial oxygenation devices to mitigate coastal hypoxia, particularly in mariculture regions. Focusing on a typical mariculture region in the coastal waters of China, we examined the combined effects of topography, hydrodynamics, and biogeochemical processes. A high-resolution three-dimensional physical-biogeochemical coupled model, validated against observational data from three summer cruises in 2020, accurately captured key drivers of hypoxia.
View Article and Find Full Text PDFPLoS One
November 2024
Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Brazil.
The neuston layer represents a complex community inhabiting the interface where oceanographic and atmospheric processes interact. Here, our aim was to compare patterns in the distribution and abundance of cnidarian assemblages observed in the neuston to parallel patterns previously observed in epipelagic waters along the spread of the Amazon River Plume over the Western Equatorial Atlantic, to test if the neuston reflects the patterns of the overall community whose core of distribution is located in epipelagic waters or are shaped by specific surface processes. The results show that both initial hypothesis were false.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!