Calcium regulation of Ca(2+)-permeable ion channels is an important mechanism in the control of cell function. Polycystin-2 (PC2, TRPP2), a member of the transient receptor potential superfamily, is a nonselective cation channel with Ca(2+) permeability. The molecular mechanisms associated with PC2 regulation by Ca(2+) remain ill-defined. We recently demonstrated that PC2 from human syncytiotrophoblast (PC2hst) but not the in vitro translated protein (PC2(iv)), functionally responds to changes in intracellular (cis) Ca(2+). In this study we determined the regulatory effect(s) of Ca(2+)-sensitive and -insensitive actin-binding proteins (ABPs) on PC2(iv) channel function in a lipid bilayer system. The actin-bundling protein α-actinin increased PC2(iv) channel function in the presence of cis Ca(2+), although instead was inhibitory in its absence. Conversely, filamin that shares actin-binding domains with α-actinin had a strong inhibitory effect on PC2(iv) channel function in the presence, but no effect in the absence of cis Ca(2+). Gelsolin stimulated PC2(iv) channel function in the presence, but not the absence of cis Ca(2+). In contrast, profilin that shares actin-binding domains with gelsolin, significantly increased PC2(iv) channel function both in the presence and absence of Ca(2+). The distinct effect(s) of the ABPs on PC2(iv) channel function demonstrate that Ca(2+) regulation of PC2 is actually mediated by direct interaction(s) with structural elements of the actin cytoskeleton. These data indicate that specific ABP-PC2 complexes would confer distinct Ca(2+)-sensitive properties to the channel providing functional diversity to the cytoskeletal control of transient receptor potential channel regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423068 | PMC |
http://dx.doi.org/10.1016/j.bpj.2015.03.050 | DOI Listing |
Biochem Biophys Res Commun
June 2023
Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina. Electronic address:
The regulation by Ca of Ca-permeable ion channels represents an important mechanism in the control of cell function. Polycystin-2 (PC2, TRPP2), a member of the TRP channel family (Transient Potential Receptor), is a Ca permeable non-selective cation channel. Previous studies from our laboratory demonstrated that physiological concentrations of Ca do not regulate in vitro translated PC2 (PC2) channel activity.
View Article and Find Full Text PDFJ Biol Chem
September 2015
From the Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, C1122AAH Buenos Aires, Argentina and
Polycystin-2 (PC2) is a TRP-type, Ca(2+)-permeable non-selective cation channel that plays an important role in Ca(2+) signaling in renal and non-renal cells. The effect(s) of the cAMP pathway and kinase mediated phosphorylation of PC2 seem to be relevant to PC2 trafficking and its interaction with polycystin-1. However, the role of PC2 phosphorylation in channel function is still poorly defined.
View Article and Find Full Text PDFBiophys J
May 2015
Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina. Electronic address:
Biophys J
July 2013
Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina.
Polycystin-2 (PC2, TRPP2) is a Ca(2+)-permeable, nonselective cation channel implicated in Ca(2+) transport and epithelial cell signaling. Although PC2 may contribute to Ca(2+) transport in human term placenta, the regulatory mechanisms associated with Ca(2+) handling in this tissue are largely unknown. In this work we assessed the regulation by Ca(2+) of PC2 channel function from a preparation of apical membranes of human syncytiotrophoblast (PC2hst) reconstituted in a lipid bilayer system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!