Between 8 to 14 calcium-calmodulin (Ca(2+)/CaM) dependent protein kinase-II (CaMKII) subunits form a complex that modulates synaptic activity. In living cells, the autoinhibited holoenzyme is organized as catalytic-domain pairs distributed around a central oligomerization-domain core. The functional significance of catalytic-domain pairing is not known. In a provocative model, catalytic-domain pairing was hypothesized to prevent ATP access to catalytic sites. If correct, kinase-activity would require catalytic-domain pair separation. Simultaneous homo-FRET and fluorescence correlation spectroscopy was used to detect structural changes correlated with kinase activation under physiological conditions. Saturating Ca(2+)/CaM triggered Threonine-286 autophosphorylation and a large increase in CaMKII holoenzyme hydrodynamic volume without any appreciable change in catalytic-domain pair proximity or subunit stoichiometry. An alternative hypothesis is that two appropriately positioned Threonine-286 interaction-sites (T-sites), each located on the catalytic-domain of a pair, are required for holoenzyme interactions with target proteins. Addition of a T-site ligand, in the presence of Ca(2+)/CaM, elicited a large decrease in catalytic-domain homo-FRET, which was blocked by mutating the T-site (I205K). Apparently catalytic-domain pairing is altered to allow T-site interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423044 | PMC |
http://dx.doi.org/10.1016/j.bpj.2015.03.028 | DOI Listing |
Front Parasitol
April 2024
Institut für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg (BFS), Justus Liebig Universitaet Giessen, Giessen, Germany.
Introduction: Schistosomiasis has for many years relied on a single drug, praziquantel (PZQ) for treatment of the disease. Immense efforts have been invested in the discovery of protein kinase (PK) inhibitors; however, given that the majority of PKs are still not targeted by an inhibitor with a useful level of selectivity, there is a compelling need to expand the chemical space available for synthesizing new, potent, and selective PK inhibitors. Small-molecule inhibitors targeting the ATP pocket of the catalytic domain of PKs have the potential to become drugs devoid of (major) side effects, particularly if they bind selectively.
View Article and Find Full Text PDFProteins
December 2024
Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan.
ACS Phys Chem Au
November 2024
Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
OaPAC is a photoactivated enzyme that forms a homodimer. The two blue-light using flavin (BLUF) photoreceptor domains are connected to the catalytic domains with long coiled-coil C-terminal helices. Upon photoreception, reorganization of the hydrogen bonding network between Tyr6, Gln48, and the chromophore in the BLUF domain and keto-enol tautomerization of Gln48 are thought to occur.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, SP, Brazil.
GH10 xylanases and GH62 Arabinofuranosidases play key roles in the breakdown of arabinoxylans and are important tools in various industrial and biotechnological processes, such as renewable biofuel production, the paper industry, and the production of short-chain xylooligosaccharides (XOS) from plant biomass. However, the use of these enzymes in industrial settings is often limited due to their relatively low thermostability and reduced catalytic efficiency. To overcome these limitations, strategies based on enzymatic chimera construction and the use of metal ions and other cofactors have been proposed to produce new recombinant enzymes with improved catalytic activity and thermostability.
View Article and Find Full Text PDFBiomolecules
October 2024
Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10 000 Zagreb, Croatia.
In previous research, 1,2,3-triazolium salts showed significant biological activity as potential inhibitors of cholinesterase enzymes (ChEs), which are crucial for neurotransmission. In this research, pairs of uncharged thienobenzo-triazoles and their charged salts were prepared in order to further examine the role of the positive charge on the nitrogen of the triazole ring in interactions within the active site of the enzymes, and to compare the selectivity of 1,2,3-triazolium salts in relation to their uncharged analogs obtained by photochemical cyclization. Neutral thienobenzo-triazoles showed very good selective activity toward butyrylcholinesterase (BChE), while their salts showed excellent non-selective inhibition toward both BChE (the most active : IC 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!