A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chemical and Morphological Changes of Primary Teeth Irradiated with Nd:YAG Laser: An Ex Vivo Long-Term Analysis. | LitMetric

AI Article Synopsis

  • The study aimed to evaluate the long-term effects of Nd:YAG laser treatment on primary enamel from children at high risk for cavities, focusing on chemical and structural changes.
  • Researchers analyzed 186 primary teeth using various techniques, including scanning electron microscopy (SEM) and infrared spectroscopy, to assess the enamel's properties after irradiation.
  • Findings indicated that laser treatment increased enamel hardness and reduced cavity formation compared to control groups, demonstrating that Nd:YAG laser creates significant chemical modifications to enamel that could prevent demineralization.

Article Abstract

Objective: The aim of this study was to assess any long-term chemical and morphological Nd:YAG laser modifications on irradiated primary enamel.

Background Data: Previous studies on irradiated primary human enamel employed methodologies that evaluated the short-term effects only.

Methods: One hundred and eighty-six irradiated (with and/or without fluoride) primary enamel teeth from high-caries-risk children, which were exfoliated over a 1-year period, were collected, and the sample surface area was submitted for scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray energy-dispersive spectrometry (EDS). The subsurface was analyzed by Knoop microhardness and light microscopy (LM). Data were analyzed by one way ANOVA and Tukey tests (α=0.05) and Kruskall-Wallis and Tukey tests (α=0.05).

Results: FTIR analysis revealed a higher concentration of phosphate and carbonate in the irradiated (0.987±0.064) and lower concentration in the control groups (1.477±0.310). SEM analysis showed that the control samples exhibited a slightly smoother surface than the irradiated groups. The EDS analysis did not show any differences in the amount of calcium, phosphorus, or fluoride among the groups. The microhardness analysis revealed that sealant (249.86±7.15) and laser irradiation (262.44±22.69) led to higher hardness values than the negative control group (128.35±25.19). LM indicated significantly reduced caries formation in the laser (5.35±5.38%) and the laser plus acidulated phosphate fluoride (APF) groups (10.35±0.88%) compared with the negative control group (72.56±12.86%).

Conclusions: Even with the limitations of the present study, these results suggest that Nd:YAG irradiation clinically modified the chemical composition of the enamel surface regardless of fluoride concentration, which successfully inhibited demineralization of primary tooth enamel over a 1-year period without significant morphological changes.

Download full-text PDF

Source
http://dx.doi.org/10.1089/pho.2014.3876DOI Listing

Publication Analysis

Top Keywords

chemical morphological
8
morphological changes
8
ndyag laser
8
irradiated primary
8
1-year period
8
tukey tests
8
analysis revealed
8
negative control
8
control group
8
irradiated
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!