Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Type 2 Diabetes Mellitus is a progressive disease with increased risk of developing serious complications. Identifying subpopulations and their relevant risk factors can contribute to the prevention and effective management of diabetes. We use a novel divisive hierarchical clustering technique to identify clinically interesting subpopulations in a large cohort of Olmsted County, MN residents. Our results show that our clustering algorithm successfully identified clinically interesting clusters consisting of patients with higher or lower risk of diabetes than the general population. The proposed algorithm offers fine control over the granularity of the clustering, has the ability to seamlessly discover and incorporate interactions among the risk factors, and can handle non-proportional hazards, as well. It has the potential to significantly impact clinical practice by recognizing patients with specific risk factors who may benefit from an alternative management approach potentially leading to the prevention of diabetes and its complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419974 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!