Ontologies underpin methods throughout biomedicine and biomedical informatics. However, as ontologies increase in size and complexity, so does the likelihood that they contain errors. Effective methods that identify errors are typically manual and expert-driven; however, automated methods are essential for the size of modern biomedical ontologies. The effect of ontology errors on their application is unclear, creating a challenge in differentiating salient, relevant errors with those that have no discernable effect. As a first step in understanding the challenge of identifying salient, common errors at a large scale, we asked 5 experts to verify a random subset of complex relations in the SNOMED CT CORE Problem List Subset. The experts found 39 errors that followed several common patterns. Initially, the experts disagreed about errors almost entirely, indicating that ontology verification is very difficult and requires many eyes on the task. It is clear that additional empirically-based, application-focused ontology verification method development is necessary. Toward that end, we developed a taxonomy that can serve as a checklist to consult during ontology quality assurance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419962PMC

Publication Analysis

Top Keywords

errors
8
ontology verification
8
empirically derived
4
derived taxonomy
4
taxonomy errors
4
errors snomed
4
snomed ontologies
4
ontologies underpin
4
underpin methods
4
methods biomedicine
4

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

A characteristic feature of redundancy in the motor system is the ability to compensate for the failure of individual motor elements without affecting task performance. In this study, we examined the pattern and variability in error compensation between motor elements during a virtual task. Participants performed a redundant cursor control task with finger movements.

View Article and Find Full Text PDF

Robust discrimination between closely related species of salmon based on DNA fragments.

Anal Bioanal Chem

January 2025

Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.

Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.

View Article and Find Full Text PDF

Classification systems for Adolescent Idiopathic Scoliosis (AIS) play an important role in guiding both surgical planning and conservative treatments. Traditional 2D classification systems, such as the Lenke, King and Lehnert-Schroth classifications, have been widely used for the clinical diagnosis and treatment of scoliosis. However, with the growing understanding of the three-dimensional nature of scoliosis and advancements in 3D reconstruction technologies, 3D classification systems are gaining increasing attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!