Ontologies underpin methods throughout biomedicine and biomedical informatics. However, as ontologies increase in size and complexity, so does the likelihood that they contain errors. Effective methods that identify errors are typically manual and expert-driven; however, automated methods are essential for the size of modern biomedical ontologies. The effect of ontology errors on their application is unclear, creating a challenge in differentiating salient, relevant errors with those that have no discernable effect. As a first step in understanding the challenge of identifying salient, common errors at a large scale, we asked 5 experts to verify a random subset of complex relations in the SNOMED CT CORE Problem List Subset. The experts found 39 errors that followed several common patterns. Initially, the experts disagreed about errors almost entirely, indicating that ontology verification is very difficult and requires many eyes on the task. It is clear that additional empirically-based, application-focused ontology verification method development is necessary. Toward that end, we developed a taxonomy that can serve as a checklist to consult during ontology quality assurance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419962 | PMC |
J Mol Model
January 2025
Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.
Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFExp Brain Res
January 2025
Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, USA.
A characteristic feature of redundancy in the motor system is the ability to compensate for the failure of individual motor elements without affecting task performance. In this study, we examined the pattern and variability in error compensation between motor elements during a virtual task. Participants performed a redundant cursor control task with finger movements.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.
Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.
View Article and Find Full Text PDFOrthop Surg
January 2025
Spine Surgery Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Classification systems for Adolescent Idiopathic Scoliosis (AIS) play an important role in guiding both surgical planning and conservative treatments. Traditional 2D classification systems, such as the Lenke, King and Lehnert-Schroth classifications, have been widely used for the clinical diagnosis and treatment of scoliosis. However, with the growing understanding of the three-dimensional nature of scoliosis and advancements in 3D reconstruction technologies, 3D classification systems are gaining increasing attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!