Photosynthetic splitting of water into oxygen by plants, algae, and cyanobacteria is catalyzed by the oxygen-evolving center (OEC). Synthetic mimics of the OEC, which is composed of an asymmetric manganese-calcium-oxygen cluster bound to protein groups, may promote insight into the structural and chemical determinants of biological water oxidation and lead to development of superior catalysts for artificial photosynthesis. We synthesized a Mn4Ca-cluster similar to the native OEC in both the metal-oxygen core and the binding protein groups. Like the native OEC, the synthetic cluster can undergo four redox transitions and shows two magnetic resonance signals assignable to redox and structural isomerism. Comparison with previously synthesized Mn3CaO4-cubane clusters suggests that the fourth Mn ion determines redox potentials and magnetic properties of the native OEC.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aaa6550DOI Listing

Publication Analysis

Top Keywords

native oec
12
oxygen-evolving center
8
oec synthetic
8
protein groups
8
oec
5
inorganic chemistry
4
chemistry synthetic
4
synthetic mn₄ca-cluster
4
mn₄ca-cluster mimicking
4
mimicking oxygen-evolving
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!