Structure of the nuclease subunit of human mitochondrial RNase P.

Nucleic Acids Res

Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology, DESY-Campus, 22607 Hamburg, Germany European Molecular Biology Laboratory, Hamburg Unit, 22603 Hamburg, Germany

Published: June 2015

Mitochondrial RNA polymerase produces long polycistronic precursors that contain the mRNAs, rRNAs and tRNAs needed for mitochondrial translation. Mitochondrial RNase P (mt-RNase P) initiates the maturation of the precursors by cleaving at the 5' ends of the tRNAs. Human mt-RNase P is only active as a tripartite complex (mitochondrial RNase P proteins 1-3; MRPP1-3), whereas plant and trypanosomal RNase Ps (PRORPs)-albeit homologous to MRPP3-are active as single proteins. The reason for this discrepancy has so far remained obscure. Here, we present the crystal structure of human MRPP3, which features a remarkably distorted and hence non-productive active site that we propose will switch to a fully productive state only upon association with MRPP1, MRPP2 and pre-tRNA substrate. We suggest a mechanism in which MRPP1 and MRPP2 both deliver the pre-tRNA substrate and activate MRPP3 through an induced-fit process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477676PMC
http://dx.doi.org/10.1093/nar/gkv481DOI Listing

Publication Analysis

Top Keywords

mitochondrial rnase
12
mrpp1 mrpp2
8
pre-trna substrate
8
mitochondrial
5
structure nuclease
4
nuclease subunit
4
subunit human
4
human mitochondrial
4
rnase
4
rnase mitochondrial
4

Similar Publications

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria.

View Article and Find Full Text PDF

microRNAs (miRNAs) and small interfering RNAs (siRNAs) are 21- to 22-nucleotide RNAs that guide Argonaute-class effectors to targets for repression. In this work, we uncover 5-aminolevulinic acid synthase 1 (ALAS1), the initiating enzyme for heme biosynthesis, as a general repressor of miRNA accumulation. Although heme is known to be a positive cofactor for the nuclear miRNA processing machinery, ALAS1-but not other heme biosynthesis enzymes-limits the assembly and activity of Argonaute complexes under heme-replete conditions.

View Article and Find Full Text PDF

Uridine insertion/deletion editing of mitochondrial messenger RNAs (mRNAs) in kinetoplastids entails the coordinated action of three complexes. RNA Editing Catalytic Complexes (RECCs) catalyze the enzymatic reactions, while the RNA Editing Substrate Binding Complex (RESC) and RNA Editing Helicase 2 Complex (REH2C) coordinate interactions between RECCs, mRNAs and hundreds of guide RNAs that direct edited sequences. Additionally, numerous auxiliary factors are required for productive editing of specific mRNAs.

View Article and Find Full Text PDF

The entire RNA lifecycle, spanning from transcription to decay, is intricately regulated by RNA-binding proteins (RBPs). To understand their precise functions, it is crucial to identify direct targets, pinpoint their exact binding sites, and unravel the underlying specificity in vivo. Individual-nucleotide resolution UV crosslinking and immunoprecipitation 2 (iCLIP2) is a state-of-the-art technique that enables the identification of RBP binding sites at single-nucleotide resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!