Integration of transcriptome and methylome analysis of aldosterone-producing adenomas.

Eur J Endocrinol

Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan Department of Molecular Endocrinology and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, JapanDepartment of Maternal-Fetal BiologyNational Research Institute for Child Health and Development, Tokyo 157-8535, JapanCenter for Medical Welfare and Liaison ServicesDepartments of UrologyPreemptive Medicine and MetabolismOrgan Network and MetabolismGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, JapanJapan Science and Technology AgencyPRESTO, Tokyo 102-0076, JapanJapan Science and Technology AgencyCREST, Tokyo 102-0076, Japan.

Published: August 2015

Objective: The pathophysiology of aldosterone-producing adenomas (APA) has been investigated intensively through genetic and genomic approaches. However, the role of epigenetics in APA is not fully understood. In the present study, we explored the relationship between gene expression and DNA methylation status in APA.

Methods: We conducted an integrated analysis of transcriptome and methylome data of paired APA-adjacent adrenal gland (AAG) samples from the same patient. The adrenal specimens were obtained from seven Japanese patients with APA who underwent adrenalectomy. Gene expression and genome-wide CpG methylation profiles were obtained from RNA and DNA samples that were extracted from those seven paired tissues.

Results: Methylome analysis showed global CpG hypomethylation in APA relative to AAG. The integration of gene expression and methylation status showed that 34 genes were up-regulated with CpG hypomethylation in APA. Of these, three genes (CYP11B2, MC2R, and HPX) may be related to aldosterone production, and five genes (PRRX1, RAB38, FAP, GCNT2, and ASB4) are potentially involved in tumorigenesis.

Conclusion: The present study is the first methylome analysis to compare APA with AAG in the same patients. Our integrated analysis of transcriptome and methylome revealed DNA hypomethylation in APA and identified several up-regulated genes with DNA hypomethylation that may be involved in aldosterone production and tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1530/EJE-15-0148DOI Listing

Publication Analysis

Top Keywords

transcriptome methylome
12
methylome analysis
12
gene expression
12
hypomethylation apa
12
aldosterone-producing adenomas
8
methylation status
8
integrated analysis
8
analysis transcriptome
8
cpg hypomethylation
8
aldosterone production
8

Similar Publications

Glyphosate-Based Herbicide Stress During Pregnancy Impairs Intestinal Development in Newborn Piglets by Modifying DNA Methylation.

J Agric Food Chem

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

Glyphosate-based herbicide (GBH), a feed contaminant, has been proven to impair the growth and development of humans and animals. Previous research has revealed that maternal toxin exposure during pregnancy could cause permanent fetal changes by epigenetic modulation. However, there was insufficient evidence of the involvement of DNA methylation in maternal GBH exposure-induced intestinal health of offspring.

View Article and Find Full Text PDF

Introduction: Nasopharyngeal cancer (NPC) is a multifaceted disease characterized by genetic and epigenetic modifications. While Epstein-Barr virus (EBV) infection is a known risk factor, recent studies highlight the significant role of DNA methylation in NPC pathogenesis. Aberrant methylation, particularly at CpG sites, can silence tumour suppressor genes, promoting uncontrolled cell growth.

View Article and Find Full Text PDF

Sharka disease, caused by the plum pox virus (PPV), negatively impacts stone fruit production, resulting in economic losses. It has been demonstrated that grafting the almond ( (Miller) D.A.

View Article and Find Full Text PDF

Profiling Genome-Wide Methylation Patterns in Cattle Infected with .

Int J Mol Sci

December 2024

Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.

DNA methylation (DNAm) regulates gene expression and genomic imprinting. This study aimed to investigate the effect of gastrointestinal (GI) nematode infection on host DNAm. Helminth-free Holstein steers were either infected with (the brown stomach worm) or given tap water only as a control.

View Article and Find Full Text PDF

Background: Interpreting biological system changes requires interpreting vast amounts of multi-omics data. While user-friendly tools exist for single-omics analysis, integrating multiple omics still requires bioinformatics expertise, limiting accessibility for the broader scientific community.

Results: BiomiX tackles the bottleneck in high-throughput omics data analysis, enabling efficient and integrated analysis of multiomics data obtained from two cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!