ZnO nanoparticles are utilized in an ever growing number of products and can, therefore, be readily encountered in our everyday life. Human beings' outermost tissues consist of different epithelia and are, therefore, the most exposed to materials from the environment. In this paper, Caco-2 and Calu-3 cell lines were used, having been previously broadly applied for in vitro modelling of intestinal and respiratory epithelia, respectively. The toxicity of synthesized micro-, submicro- and nanoparticulate ZnO on these epithelia was measured and compared to the efficacy of the same ZnO particles as antibacterial agents. An approximately four-fold excess in antibacterial activity of ZnO nanoparticles over ZnO granulate was observed. The results of this paper reveal a sharp distinction between toxic nanoparticulate ZnO and safe ZnO particles of larger sizes in intestinal and airway in vitro epithelial models. In contrast, ZnO of larger particle sizes had only modestly lower antibacterial activity, which can be compensated for with higher dosing. These results show that nanoparticulate ZnO requires critical in vivo assessment before application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2015.03.053DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
12
nanoparticulate zno
12
zno
9
particles antibacterial
8
epithelia toxicity
8
zno nanoparticles
8
zno particles
8
morphological impact
4
impact zinc
4
zinc oxide
4

Similar Publications

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films.

Food Chem X

January 2025

Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.

This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.

View Article and Find Full Text PDF

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

Staphylococcus aureus is an important human pathogen and a commensal of the human nose and skin. Survival and persistence during colonisation are likely major drivers of S. aureus evolution.

View Article and Find Full Text PDF

Wound care presents an imposed financial burden for healthcare organizations, prompting the need for novel and cost-efficient dressings. In this study, we address this challenge by introducing a novel approach to fabricate antibacterial alginate-based fibrous materials using a combination of wet spinning and the wet-laying method, which offer advantages including structural and functional properties such as breathability, nontoxicity, biocompatibility, and cost-effectiveness. The wet spinning method was employed to develop porous and non-porous Ca-alginate fibers with diameters of 100 ± 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!