Tubular aggregates in human muscle biopsies have been reported to occur in a variety of acquired and hereditary neuromuscular conditions since 1964. Recently mutations in the gene encoding the main calcium sensor in the sarcoplasmic reticulum, stromal interaction molecule 1 (STIM1), have been identified as a cause of autosomal dominant tubular aggregate myopathy. We studied a German family with tubular aggregate myopathy and defined cellular consequences of altered STIM1 function. Both patients in our family had early progressive myopathy with proximal paresis of arm and leg muscles, scapular winging, ventilatory failure, joint contractures and external ophthalmoplegia. One patient had a well-documented disease course over 50 years. Sequencing of the STIM1 gene revealed a previously unreported missense mutation (c.242G>A; p.Gly81Asp) located in the first calcium binding EF domain. Functional characterization of the new STIM1 mutation by calcium imaging revealed that calcium influx was significantly increased in primary myoblasts of the index patient compared to controls pointing at a severe alteration of intracellular calcium homeostasis. This new family widens the spectrum of STIM1-associated myopathies to a more severe phenotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nmd.2015.04.005 | DOI Listing |
BMC Oral Health
January 2025
Basic Dental Sciences Department, Faculty of Dentistry, Zarqa University, PO Box 2000, Zarqa, 13110, Jordan.
Objective: This study aimed to investigate and compare the histological response of rabbit dental pulp after direct pulp capping with 3 different materials: mineral trioxide aggregate (MTA), nanoparticles of fluorapatite (Nano-FA), and nanoparticles of hydroxyapatite (Nano-HA) after 4 and 6-week time intervals.
Material And Methods: A total of 72 upper and lower incisor teeth from 18 rabbits were randomly categorized into 3 groups)24 incisors from six rabbits each. MTA Group: teeth were capped with MTA.
Cell Rep
December 2024
Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. Electronic address:
An excessive immune response damages organs, yet its molecular mechanism is incompletely understood. Here, we screened a factor mediating organ damage upon genetic activation of the innate immune pathway using Drosophila renal tubules. We found that an antimicrobial peptide, Attacin-D (AttD), causes organ damage upon immune deficiency (Imd) pathway activation in the Malpighian tubules.
View Article and Find Full Text PDFVet Pathol
December 2024
Pfizer Inc., Cambridge, MA.
The kidney plays an important role in iron homeostasis and mesangial cells (MCs) are phagocytic cells important for glomerular homeostasis. Sickle hemoglobin (HbS) modulators are promising clinical candidates for treatment of sickle cell disease. Although they prevent disease pathophysiology of HbS polymerization and red blood cell (RBC) sickling by increasing hemoglobin oxygen affinity, higher oxygen affinity can also cause transient tissue hypoxia with compensatory increases in erythropoiesis and subsequent increases in RBC turnover.
View Article and Find Full Text PDFCell Rep Methods
December 2024
Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan. Electronic address:
Human intestinal organoids (HIOs) derived from human pluripotent stem cells (hPSCs) are promising resources for intestinal regenerative therapy as they recapitulate both endodermal and mesodermal components of the intestine. However, due to their hPSC-line-dependent mesenchymal development and spherical morphology, HIOs have limited applicability beyond basic research and development. Here, we demonstrate the incorporation of separately differentiated mesodermal and mid/hindgut cells into assembled spheroids to stabilize mesenchymal growth in HIOs.
View Article and Find Full Text PDFChemistry
November 2024
Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.
The self-assembly process is governed by the individual constituents of molecules through precise non-covalent interactions. Amphiphilic cyanines are intriguing in supramolecular chemistry due to the large polarizability of their delocalized π-electron systems, their tuneable optical properties and their ability to form well-defined self-assembled structures in different media. Here we present the synthesis of a novel tetrahydroxy amphiphilic carbocyanine dye with perfluoro alkylated chains -(CH)-(CF)-CF as hydrophobic segments and aminoproanediol as hydrophilic segment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!