Viral diseases represent serious challenge in marine farming of Atlantic salmon (Salmo salar L). Pancreas disease (PD) caused by a salmonid alphavirus (SAV) is by far the most serious in northern Europe. To control PD, it is necessary to identify virus transmission routes. One aspect to consider is whether the virus is transported as free particles or associated with potential vectors. Farmed salmonids have high lipid content in their tissue which may be released into the environment from decomposing dead fish. At the seawater surface, the effects of wind and ocean currents are most prominent. The aim of this study was primarily to identify whether the lipid fraction leaking from dead infected salmon contains SAV. Adipose tissue from dead SAV-infected fish from three farming sites was submerged in beakers with sea water in the laboratory and stored at different temperature and time conditions. SAV was identified by real-time RT-PCR in the lipid fractions accumulating at the water surface in the beakers. SAV-RNA was also present in the sea water. Lipid fractions were transferred to cell culture, and viable SAV was identified. Due to its hydrophobic nature, fat with infective pathogenic virus at the surface may contribute to long-distance transmission of SAV.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfd.12382DOI Listing

Publication Analysis

Top Keywords

sea water
8
sav identified
8
lipid fractions
8
sav
5
liquid fat
4
fat potential
4
potential abiotic
4
abiotic vector
4
vector horizontal
4
horizontal transmission
4

Similar Publications

Wastewater treatment plant (WWTP) is a sustainable technique for making wastewater reusable for non-potable purposes. However, in developing countries, most conventional WWTPs are not equipped to trap all pharmaceutical residues (PRs) and pharmaceutically active chemicals (PhACs). This study aims to perform non-target screening of these contaminants in wastewater and explore health and environmental hazards and the removal efficiency of a WWTP in Malaysia.

View Article and Find Full Text PDF

Lattice Strain-Modulated Trifunctional CoMoO Polymorph-Based Electrodes for Asymmetric Supercapacitors and Self-Powered Water Splitting.

Small

January 2025

Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China.

Developing efficient, multifunctional electrodes for energy storage and conversion devices is crucial. Herein, lattice strains are reported in the β-phase polymorph of CoMoO within CoMoO@CoO heterostructure via phosphorus doping (P-CoMoO@CoO) and used as a high-performance trifunctional electrode for supercapacitors (SCs), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER) in alkaline electrolytes. A tensile strain of +2.

View Article and Find Full Text PDF

Seawater batteries (SWBs) have emerged as a next-generation battery technology that does not rely on lithium, a limited resource essential for lithium-ion batteries. Instead, SWBs utilize abundant sodium from seawater, offering a sustainable alternative to conventional battery technologies. Previous studies have demonstrated the feasibility of achieving high energy densities in SWB anodes using vertically aligned electrodes.

View Article and Find Full Text PDF

Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood.

View Article and Find Full Text PDF

Rhamnolipid: nature-based solution for the removal of microplastics from the aquatic environment.

Integr Environ Assess Manag

January 2025

Engineering Faculty, Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye.

Over the past two decades, research into the accumulation of small plastic particles and fibers in organisms and environmental settings has yielded over 7,000 studies, highlighting the widespread presence of microplastics in ecosystems, wildlife, and human bodies. In recent years, these contaminants have posed a significant threat to human, animal, and environmental health, with most efforts concentrated on removing them from aquatic systems. Given this urgency, the purpose of this study was to investigate the potential of rhamnolipid, a biosurfactant, for the removal of microplastics from water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!