Objectives: To measure iron accumulation in the basal ganglia in Huntington's disease (HD) using quantitative susceptibility mapping (QSM), and to ascertain its relevance in terms of clinical and disease severity.
Methods: In this cross-sectional investigation, T2* weighted imaging was undertaken on 31 premanifest HD, 32 symptomatic HD and 30 control participants as part of the observational IMAGE-HD study. Group differences in iron accumulation were ascertained with QSM. Associations between susceptibility values and disease severity were also investigated.
Results: Compared with controls, both premanifest and symptomatic HD groups showed significantly greater iron content in pallidum, putamen and caudate. Additionally, iron accumulation in both putamen and caudate was significantly associated with disease severity.
Conclusions: These findings provide the first evidence that QSM is sensitive to iron deposition in subcortical target areas across premanifest and symptomatic stages of HD. Such findings could open up new avenues for biomarker development and therapeutic intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/jnnp-2014-310183 | DOI Listing |
J Invest Dermatol
January 2025
Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China. Electronic address:
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
Iron stress adversely impacts plants' growth and development. Transcription factors (TFs) receive stress signals and modulate plant tolerance by influencing the expression of related functional genes. In the present study, we investigated the role of an apple bHLH transcription factor in the tolerance to iron stresses.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea.
For plant diseases to become established, plant pathogens require not only virulence factors and susceptible hosts, but also optimal environmental conditions. The accumulation of high soil salinity can have serious impacts on agro-biological ecosystems. However, the interactions between plant pathogens and salinity have not been fully characterized.
View Article and Find Full Text PDFMol Med
January 2025
Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
Background: Chronic kidney disease (CKD) is a leading cause of death in the United States, and renal fibrosis represents a pathologic hallmark of CKD. Extracellular cold-inducible RNA-binding protein (eCIRP) is a stress response protein involved in acute inflammation, tissue injury and regulated cell death. However, the role of eCIRP in chronic inflammation and tissue injury has not been elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!