Wound infection is a severe complication causing delayed healing and risks for patients. Conventional methods of diagnosis for infection involve error-prone clinical description of the wound and time-consuming microbiological tests. More reliable alternatives are still rare, except for invasive and unaffordable gold standard methods. This review discusses the diversity of new approaches for wound infection determination. There has been progress in the detection methods of microorganisms, including the assessment of the diversity of the bacterial community present in a wound, as well as in the elaboration of specific markers. Another interesting strategy involves the quantification of enzyme activities in the wound fluid secreted by the immune system as response to infection. Color-changing substrates for these enzymes consequently have been shown to allow detection of an infection in wounds in a fast and easy way. Promising results were also delivered in measuring pH changes or detecting enhanced amounts of volatile molecules in case of infection. A simple and effective infection detection tool is not yet on the market, but innovative ideas pave the way for the investigation of fast and easy point-of-care devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-015-6637-7 | DOI Listing |
Int J Biol Macromol
December 2024
Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
Globally, traumatic injuries and severe hemorrhagic wounds resulting from natural disasters, wars, traffic accidents, and operation rooms, especially during birth, are among the most difficult humanitarian and economic problems. Thus, the priority in emergency medical treatment is reducing unexpected blood loss, which can significantly influence a patient's rescue and recovery speed. For the immediate cessation of bleeding in severe hemorrhagic wounds and to speed up their healing, environmentally friendly γ-ionizing irradiation technology was used to develop innovative natural-based hydrogels impregnated with traditional medicinal plant extracts (MPE) with proven hemostatic and bactericidal potential as potential dressings for hemostasis, infection control, and wound healing.
View Article and Find Full Text PDFHead Neck
December 2024
Department of Otolaryngology - Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA.
Objectives: Virtual surgical planning (VSP) allows for optimal reconstruction of maxillary defects with fibula free flaps. Current data are limited regarding long-term complications of patient-specific plates (PSPs) in this setting. Our objective was to determine long-term complications of PSPs in maxillary reconstruction using fibula free flaps.
View Article and Find Full Text PDFJ Appl Microbiol
December 2024
School of Sports and Health Sciences, Cardiff Metropolitan University, Llandaff campus, Cardiff - CF5 2YB, United Kingdom.
Aims: Myxobacteria are non-pathogenic, saprophytic, soil-dwelling predatory bacteria known for their antimicrobial potential. Many pathogenic bacteria form biofilms to protect themselves from antimicrobial agents and the immune system. This study has investigated the predatory activities of myxobacteria against pathogenic bacteria in biofilms.
View Article and Find Full Text PDFJ Craniofac Surg
October 2024
Department of Plastic and Reconstructive Surgery, Johns Hopkins Hospital.
Purpose: The mandible is the second most fractured facial bone. The timing of open reduction internal fixation (ORIF) has been a subject of debate for decades. The authors sought to investigate the association between the timing of ORIF and the incidence of postoperative complications.
View Article and Find Full Text PDFJ Am Acad Orthop Surg
January 2025
From the UC Davis Department of Orthopaedic Surgery, Sacramento, CA.
Dilute povidone-iodine (polyvinylpyrrolidone iodine [PVP-I]) irrigation in spine surgery and total joint arthroplasty has seen a rapid and substantial increase in its use during the past decade. Yet, most surgeons do not know the chemistry and biochemistry that explain its efficacy in preventing infections. PVP-I forms a complex with molecular iodine (I2), facilitating the delivery of I2 to the membrane of the infectious organism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!