AI Article Synopsis

  • Oxidative stress significantly contributes to the development of cystic fibrosis (CF), and this study analyzed the levels of malondialdehyde (MDA), a marker of oxidative damage, in CF patients compared to healthy controls.
  • The research involved collecting samples (exhaled breath, sputum, and plasma) from 40 CF patients and 25 healthy individuals, revealing that MDA levels were substantially higher in CF patients across all sample types.
  • Sputum and exhaled breath MDA levels were especially effective in distinguishing CF patients from healthy subjects, indicating that MDA could serve as a useful indicator of airway oxidative stress in clinical settings.

Article Abstract

Introduction: Oxidative stress plays a pivotal role in the pathogenesis of cystic fibrosis (CF). In this study, airway and systemic oxidative stress was investigated in CF using malondialdehyde (MDA), an established by-product of polyunsaturated fatty acid peroxidation.

Methods: Exhaled breath condensate (EBC), sputum, and plasma were collected from 40 stable CF patients during routine clinical visits and from 25 healthy controls. MDA was measured by high-performance liquid chromatography.

Results: MDA levels in sputum (279.8 ± 14.7 vs. 92.7 ± 9.2 nmol/L, p < 0.0001), EBC (139.9 ± 6.7 vs. 71.5 ± 4.3 nmol/L, p < 0.0001), and plasma (176.1 ± 15.9 vs. 129.6 ± 12.9 nmol/L, p < 0.05) were increased in patients with CF compared to healthy controls. MDA measurement in sputum [area under receiver operating characteristic curve (AUC): 0.977, p < 0.0001] or EBC (AUC: 0.94, p < 0.0001) discriminated between patients and controls with greater accuracy than in plasma (AUC: 0.677, p < 0.05). Sputum and EBC MDA levels were elevated in patients with severe pulmonary dysfunction [forced expiratory volume in 1 s (FEV1) <50 % predicted] compared to those with mild-to-moderate functional impairment (FEV1 ≥50 % predicted) (p < 0.05). MDA concentrations in CF patients colonized either with Pseudomonas aeruginosa or with other bacteria were similar (p = NS). The intra- and inter-assay repeatabilities of MDA measurements was similar in all the three types of samples, while the between-visit variability was higher in plasma.

Conclusions: MDA is a potential new airway marker of oxidative stress in patients with CF. Sputum MDA differentiates best between patients and healthy subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00408-015-9739-1DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
airway systemic
8
cystic fibrosis
8
comparison airway
4
systemic malondialdehyde
4
malondialdehyde levels
4
levels assessment
4
assessment oxidative
4
stress cystic
4
fibrosis introduction
4

Similar Publications

Background: This study aimed to investigate the effects of total antioxidant capacity (T-AOC), superoxide dismu-tase (SOD), and malondialdehyde (MDA) in blood on the postoperative wound healing process of patients with severe burns treated by Meek micrografting.

Methods: In total, 154 patients with severe burns who underwent Meek micrografting treatment were selected as the observation group, and 80 healthy people were taken as the control group. General clinical data were collected, and serum T-AOC, SOD, and MDA were analyzed by biochemical analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Asthma is a chronic respiratory disease involving inflammation and other respiratory issues, with mitochondria playing a crucial role in its underlying mechanisms.
  • A bibliometric analysis of research from 2004 to mid-2024 identified 669 publications, showing significant growth in studies since 2015, primarily from the US, China, and the UK.
  • Key themes include mitochondrial dysfunction and oxidative stress, with emerging research focusing on mitochondrial biogenesis and the NLRP3 inflammasome, suggesting opportunities for new therapeutic strategies targeting mitochondria in asthma treatment.
View Article and Find Full Text PDF

Periodontitis is a significant global public health issue associated with the onset and progression of various systemic diseases, thereby requiring additional research and clinical attention. Although ferroptosis and cuproptosis have emerged as significant areas of research in the medical field, their precise roles in the pathogenesis of periodontitis remain unclear. We aim to systematically summarize the current research on ferroptosis and cuproptosis in periodontal disease and investigate the roles of glutathione pathway and autophagy pathway in connecting ferroptosis and cuproptosis during periodontitis.

View Article and Find Full Text PDF
Article Synopsis
  • The respiratory system is vital for oxygen absorption and carbon dioxide expulsion, helping to maintain the body's acid-base balance and metabolic stability.
  • The outbreak of COVID-19 has highlighted the need for new treatments for respiratory diseases, leading to renewed interest in Tanshinone IIA, a bioactive compound traditionally used for heart diseases.
  • Research shows Tanshinone IIA has various therapeutic effects, including anti-inflammatory and anti-cancer properties, and it shows promise in treating conditions like asthma and lung cancer, making it a valuable focus for future studies.
View Article and Find Full Text PDF

Ferroptosis, pathogenesis and therapy in AS co-depression disease.

Front Pharmacol

February 2025

School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.

Atherosclerosis (AS)-related cardiovascular disease and depression are often comorbid, with patients with cardiovascular disease facing an increased risk of depression, which worsens AS. Both diseases are characterized by oxidative stress and lipid metabolism disorders. Ferroptosis, a form of cell death characterized by iron overload and harmful lipid peroxide accumulation, is found in various diseases, including AS and depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!