Cataracts are the major eye disorder and have been associated mainly with mutations in lens-specific genes, but cataracts are also frequently associated with complex syndromes. In a large-scale high-throughput ENU mutagenesis screen we analyzed the offspring of paternally treated C3HeB/FeJ mice for obvious dysmorphologies. We identified a mutant suffering from rough coat and small eyes only in homozygotes; homozygous females turned out to be sterile. The mutation was mapped to chromosome 7 between the markers 116J6.1 and D7Mit294;4 other markers within this interval did not show any recombination among 160 F2-mutants. The critical interval (8.6 Mb) contains 3 candidate genes (Apoe, Six5, Opa3); none of them showed a mutation. Using exome sequencing, we identified a c.2209T>C mutation in the Xpd/Ercc2 gene leading to a Ser737Pro exchange. During embryonic development, the mutant eyes did not show major changes. Postnatal histological analyses demonstrated small cortical vacuoles; later, cortical cataracts developed. Since XPD/ERCC2 is involved in DNA repair, we checked also for the presence of the repair-associated histone γH2AX in the lens. During the time, when primary lens fiber cell nuclei are degraded, γH2AX was strongly expressed in the cell nuclei; later, it demarcates clearly the border of the lens cortex to the organelle-free zone. Moreover, we analyzed also whether seemingly healthy heterozygotes might be less efficient in repair of DNA damage induced by ionizing radiation than wild types. Peripheral lymphocytes irradiated by 1Gy Cs137 showed 6 hrs after irradiation significantly more γH2AX foci in heterozygotes than in wild types. These findings demonstrate the importance of XPD/ERCC2 not only for lens fiber cell differentiation, but also for the sensitivity to ionizing radiation. Based upon these data, we hypothesize that variations in the human XPD/ERCC2 gene might increase the susceptibility for several disorders besides Xeroderma pigmentosum in heterozygotes under particular environmental conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423972 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125304 | PLOS |
Commun Biol
July 2024
Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
Oxidative stress is a key contributor to AD pathology. However, the earliest role of pre-plaque neuronal oxidative stress, remains elusive. Using laser microdissected hippocampal neurons extracted from McGill-R-Thy1-APP transgenic rats we found that intraneuronal amyloid beta (iAβ)-burdened neurons had increased expression of genes related to oxidative stress and DNA damage responses including Ercc2, Fancc, Sod2, Gsr, and Idh1.
View Article and Find Full Text PDFPediatrics
October 2021
National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
A teenage girl had the rare combined phenotype of xeroderma pigmentosum and trichothiodystrophy, resulting from mutations in the XPD (ERCC2) gene involved in nucleotide excision repair (NER). After treatment with antibiotics, including metronidazole for recurrent infections, she showed signs of acute and severe hepatotoxicity, which gradually resolved after withdrawal of the treatment. Cultured skin fibroblasts from the patient revealed cellular sensitivity to killing by metronidazole compared with cells from a range of other donors.
View Article and Find Full Text PDFG Ital Dermatol Venereol
June 2020
Laboratories of Experimental Research in Transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
Xeroderma pigmentosum (XP) is a rare autosomal recessive disease characterized by severe cutaneous and ocular sensitivity to sunlight, leading to skin cancer. Most XP patients belong to the XP complementation groups (XP-A to XP-G), due to mutations in genes involved in nucleotide excision repair (NER). On the other hand, the XP Variant type (XP-V, OMIM#278750), which accounts for about 20% of all XP patients, is associated with normal NER function.
View Article and Find Full Text PDFAir pollutants and ionizing radiation are well-known carcinogens involved in the pathogenesis of lung cancer, and residents of coal-mining regions are exposed routinely to these agents. Polymorphisms in DNA repair genes may be associated with an increased risk of malignant transformation. We investigated associations between the risk of lung cancer in residents of the coal-mining region and polymorphisms in the genes APEX1 (rs1130409), hOGG1 (rs1052133), XRCC1 (rs25489, rs25487), XRCC2 (rs3218536), XRCC3 (rs861539), ADPRT/PARP1 (rs1136410), XPD/ERCC2 (rs13181), XPG/ERCC5 (rs17655), XPC (rs2228001), ATM (rs1801516), and NBS1 (rs1805794).
View Article and Find Full Text PDFPathol Oncol Res
July 2019
Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland.
The combination of cisplatin and gemcitabine is still one of the most frequently used first-line chemotherapy scheme in patients with advanced non-small cell lung cancer (NSCLC), in which tyrosine kinase inhibitors (TKIs) cannot be administered. Unfortunately, more than half of the patients have no benefit from chemotherapy but are still exposed to its toxic effects. Therefore, single nucleotide polymorphisms (SNPs) in the genes involved in nucleotide excision repair (NER) mechanism may be a potential predictive factor of efficiency of cytostatic based chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!