Korean fermented soybean products, such as doenjang, kochujang, ssamjang, and cho-kochujang, can harbor foodborne pathogens such as Bacillus cereus sensu lato (B. cereus sensu lato). The aim of this study was to characterize the toxin gene profiles, biochemical characteristics, and antibiotic resistance patterns of B. cereus sensu lato strains isolated from Korean fermented soybean products. Eighty-eight samples of Korean fermented soybean products purchased from retails in Seoul were tested. Thirteen of 26 doenjang samples, 13 of 23 kochujang samples, 16 of 30 ssamjang samples, and 5 of 9 cho-kochujang samples were positive for B. cereus sensu lato strains. The contamination level of all positive samples did not exceed 4 log CFU/g of food (maximum levels of Korea Food Code). Eighty-seven B. cereus sensu lato strains were isolated from 47 positive samples, and all isolates carried at least one enterotoxin gene. The detection rates of hblCDA, nheABC, cytK, and entFM enterotoxin genes among all isolates were 34.5%, 98.9%, 57.5%, and 100%, respectively. Fifteen strains (17.2%) harbored the emetic toxin gene. Most strains tested positive for salicin fermentation (62.1%), starch hydrolysis (66.7%), hemolysis (98.9%), motility test (100%), and lecithinase production (96.6%). The B. cereus sensu lato strains were highly resistant to β-lactam antibiotics such as ampicillin, penicillin, cefepime, imipenem, and oxacillin. Although B. cereus sensu lato levels in Korean fermented soybean products did not exceed the maximum levels permitted in South Korea (<10(4) CFU/g), these results indicate that the bacterial isolates have the potential to cause diarrheal or emetic gastrointestinal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.12872DOI Listing

Publication Analysis

Top Keywords

cereus sensu
32
sensu lato
32
korean fermented
20
fermented soybean
20
soybean products
20
lato strains
16
cereus
8
bacillus cereus
8
sensu
8
lato
8

Similar Publications

Bacillus cereus, a member of the Bacillus cereus sensu lato (B. cereus s.l.

View Article and Find Full Text PDF

Organic vs. Conventional Milk: Uncovering the Link to Antibiotic Resistance in sensu lato.

Int J Mol Sci

December 2024

Department of Microbiology, Faculty of Biology, University of Białystok, 1J Konstanty Ciołkowski Street, 15-245 Białystok, Poland.

sensu lato () comprises mesophilic and psychrotolerant bacteria commonly found in natural environments as well as in organic and conventional milk. Due to their potential toxigenicity and antibiotic resistance, these bacteria pose a significant threat to consumer health. Organic milk production, which prohibits the use of antibiotics and artificial additives, may influence the composition of microbiota between milk types.

View Article and Find Full Text PDF

Comparing microbiological and molecular diagnostic tools for the surveillance of anthrax.

PLoS Negl Trop Dis

November 2024

Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.

The diagnosis of anthrax, a zoonotic disease caused by Bacillus anthracis can be complicated by detection of closely related species. Conventional diagnosis of anthrax involves microscopy, culture identification of bacterial colonies and molecular detection. Genetic markers used are often virulence gene targets such as B.

View Article and Find Full Text PDF

As the interest in plant-based alternative food products has increased significantly in the last years, it is also important to investigate these products regarding microbiological aspects. The aim of this study was to assess the microbiological quality and the occurrence of selected foodborne pathogens in plant-based meat alternative products (PBMA) collected at retail level in Switzerland. A total of 100 PBMA (84 vegan and 16 vegetarian products) was analyzed qualitatively for the presence of Salmonella, Listeria monocytogenes and quantitatively for Staphylococcus aureus, Bacillus cereus group members, Enterobacteriaceae, and the total viable count.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed food products and food poisoning cases for toxin-producing bacteria using PCR, revealing a new toxin profile in 0.4% of isolates.
  • It classified toxin profiles into groups A-J, finding that 91.8% of isolates had certain toxin genes and varying prevalence of other specific toxins.
  • Whole-genome sequencing identified four species and three novel sequence types, while all isolates showed antibiotic resistance, particularly for beta-lactam, indicating significant genetic diversity and resistance in the context of Polish food products.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!