Cyclic peptide natural products contain a variety of conserved, nonproteinogenic structural elements such as d-amino acids and amide N-methylation. In addition, many cyclic peptides incorporate γ-amino acids and other elements derived from polyketide synthases. We hypothesized that the position and orientation of these extended backbone elements impact the ADME properties of these hybrid molecules, especially their ability to cross cell membranes and avoid metabolic degradation. Here we report the synthesis of cyclic hexapeptide diastereomers containing γ-amino acids (e.g., statines) and systematically investigate their structure-permeability relationships. These compounds were much more water-soluble and, in many cases, were both more membrane permeable and more stable to liver microsomes than a similar non-statine-containing derivative. Permeability correlated well with the extent of intramolecular hydrogen bonding observed in the solution structures determined in the low-dielectric solvent CDCl3, and one compound showed an oral bioavailability of 21% in rat. Thus, the incorporation of γ-amino acids offers a route to increase backbone diversity and improve ADME properties in cyclic peptide scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.5b00128DOI Listing

Publication Analysis

Top Keywords

γ-amino acids
12
oral bioavailability
8
natural products
8
cyclic peptide
8
adme properties
8
probing physicochemical
4
physicochemical boundaries
4
boundaries cell
4
cell permeability
4
permeability oral
4

Similar Publications

Background/aims: Certain sociodemographic groups are routinely underrepresented in clinical trials, limiting generalisability. Here, we describe the extent to which enriched enrolment approaches yielded a diverse trial population enriched for older age in a randomised controlled trial of a blood-based multi-cancer early detection test (NCT05611632).

Methods: Participants aged 50-77 years were recruited from eight Cancer Alliance regions in England.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Hydroxyapatite Chitosan Gradient Pore Scaffold Activates Oxidative Phosphorylation Pathway to Induce Bone Formation.

Front Biosci (Landmark Ed)

January 2025

Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.

Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.

Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.

View Article and Find Full Text PDF

(L.) Jacq. has anti-inflammatory, analgesic, haemostatic and antioxidant effects, but its pharmacological components are still unclear.

View Article and Find Full Text PDF

Powdered germinated Thai rice () is widely utilised as a dietary supplement to support health and prevent diseases. This study investigated the bioactive compound profile of water extracts from beverage powder made from Thai germinated brown rice (GBRE) and assessed its anticancer effects on cholangiocarcinoma, lung cancer, and liver cancer cell lines. Proton nuclear magnetic resonance (1H-NMR) revealed 23 metabolites, including amino acids, sugar, phenolic compounds and nitrogenous compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!