Cyclometalated diruthenium complexes 1(PF6)2-5(PF6)2 bridged by 1,3,6,8-tetra(pyrid-2-yl)-pyrene have been prepared, with the terminal ligand bis(N-methylbenzimidazolyl)pyridine (1(PF6)2), 4'-di-(p-methoxyphenyl)amino-2,2':6',2″-terpyridine (2(PF6)2), 4'-p-methoxyphenyl-2,2':6',2″-terpyridine (3(PF6)2), 2,2':6',2″-terpyridine (4(PF6)2), and trimethyl-4,4',4″-tricarboxylate-2,2':6',2″-terpyridine (5(PF6)2). The single-crystal X-ray structure of 4(PF6)2 is presented. These complexes show two stepwise anodic redox pairs, and the potentials progressively increase from 1(PF6)2 to 5(PF6)2. Complexes 1(PF6)2-4(PF6)2 have comparable electrochemical potential splitting of 200-210 mV, while complex 5(PF6)2 has a splitting of 170 mV. Upon one-electron oxidation by chemical oxidation or electrolysis, the resulting mixed-valent complexes 1(3+)-5(3+) display broad and intense absorptions between 1000 and 3000 nm. Complexes 1(3+) and 2(3+) show the presence of a higher-energy shoulder band in addition to the main near-infrared absorption band. This shoulder band is less distinguished for 3(3+)-5(3+). Three-state theory has been used to explain this difference. The one-electron oxidized forms, 1(3+)-5(3+), exhibit rhombic EPR signals at 77 K with the isotropic g values in the range of 2.18-2.24. Density functional theory (DFT) and time-dependent DFT (TDDFT) computations have been performed on 1(2+)-5(2+) to characterize their electronic structures and rationalize the absorption spectra in a wide energy range. DFT computations on 1(3+)-5(3+) show that both ruthenium ions and the bridging ligand have comparable spin densities. TDDFT computations on 1(3+) and 4(3+) have been performed to complement the experimental results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic503117k | DOI Listing |
Dalton Trans
December 2024
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
Benzoate-bridged paddlewheel diruthenium(II,II) complexes ([RuII,II2(RArCO)(L)] (L = axial ligand); [RuII,II2]) exhibit reversible redox activity involving the oxidized species [RuII,III2]. The redox activity can be finely tuned over a broad potential range by altering the substituent R on the benzoate-bridging ligand RArCO. The electronic contributions of the substituents R depend on their type and position, as was empirically demonstrated by Hammett for substituents at the - and -positions.
View Article and Find Full Text PDFDalton Trans
November 2024
Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
Paddlewheel complexes of bimetallic scaffolds are emerging metallic agents in the bioinorganic chemistry landscape. In the most commonly employed construct, these complexes are decorated by the carboxylate moiety, prompting their possible deployment to target either protein or nucleic acid targets. In this study, density functional investigation was performed to assess viable mechanistic routes for the substitution of one acetate ligand with one chelating purine, adenine or guanine, in diruthenium and dirhodium tetraacetate paddlewheel complexes.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemical Sciences, University of Naples Federico II, Complesso Univ. di Monte Sant'Angelo, via Cinthia, 26, 80126 Naples, Italy. Electronic address:
The charge of paddlewheel diruthenium complexes has a major role in defining their interaction with proteins: negatively charged complexes bind proteins non-covalently, while cationic complexes form adducts where the Ru core binds to Asp side chains at the equatorial sites, or to the main chain carbonyl groups or the side chains of His, Arg or Lys residues at the axial sites. Here we study the interactions of the neutral compound [Ru(D-p-FPhF)(OCCH)(OCO)]·3HO (D-p-FPhF = N,N'-bis(4-fluorophenyl)formamidinate), a very rare example of a paddlewheel diruthenium compound with three different equatorial ligands, with the model protein bovine pancreatic ribonuclease (RNase A) by means of UV-visible absorption spectroscopy, circular dichroism (CD), electrospray ionization mass spectrometry (ESI-MS) and X-ray crystallography. It is the first attempt to investigate the binding of a neutral diruthenium compound to a protein.
View Article and Find Full Text PDFInorg Chem
November 2024
Department of Chemistry, University of Wroclaw, ul. Joliot-Curie 14, 50-383 Wroclaw, Poland.
The large expanded telluraporphyrin, tetratellura[36]octaphyrin(1.1.1.
View Article and Find Full Text PDFDalton Trans
November 2024
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China.
Thiolate-bridged bimetallic complexes have attracted considerable attention owing to their extensive applications in bioinspired catalysis as biological metalloenzymes. Compared with bimetallic complexes supported by common thiolate ligands, those featuring functional groups that may adopt different patterns to coordinate to the metal centers are usually difficult to access, limiting their exploration. The benzimidazole moiety is a multi-faceted functional group; for example, it can act as a biomolecule-responsive ligand for the development of transition metal complexes with anticancer and antitumor properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!