A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Low efficiency IDO2 enzymes are conserved in lower vertebrates, whereas higher efficiency IDO1 enzymes are dispensable. | LitMetric

Low efficiency IDO2 enzymes are conserved in lower vertebrates, whereas higher efficiency IDO1 enzymes are dispensable.

FEBS J

Molecular Immunopathology Unit, Discipline of Pathology, School of Medical Sciences and Bosch Institute, University of Sydney, Australia.

Published: July 2015

Indoleamine 2,3-dioxygenase (IDO) is a Trp-degrading enzyme that catalyzes the first step in the kynurenine pathway. Two IDO genes, IDO1 and IDO2, are found in vertebrates and the timing of the gene duplication giving rise to the genes has been controversial. In the present study, we report that several fishes and two turtles also have both IDO1 and IDO2. This represents definitive evidence for the gene duplication occurring before the divergence of vertebrates, with IDO1 having been lost in a number of lower vertebrate lineages. IDO2 enzymes have a relatively low affinity for l-Trp; however, Anolis carolinensis (lizard) IDO2 has an affinity for l-Trp comparable to mammalian IDO1 enzymes. We identified a Ser residue located in the distal heme pocket of IDO1 (distal-Ser) (corresponding to Ser167 of human IDO1) that is conserved in all IDO1 enzymes and the lizard IDO2. This residue is conserved as Thr (distal-Thr) in other IDO2 enzymes. Biochemical analyses, using IDO variants with either Ser or Thr substitutions, suggest that the distal-Ser change was crucial for the improvement in affinity for l-Trp in ancient IDO1. The ancestral IDO1 likely had a 'moderate' enzymatic efficiency for l-Trp, clearly higher than IDO2 but lower than mammalian IDO1. The distal-Ser of lizard IDO2 bestows a high affinity for l-Trp, however, this unique IDO2 has a low enzymatic efficiency because of its very low catalytic velocity. Thus, low efficiency IDO2 enzymes have been conserved throughout vertebrate evolution, whereas higher efficiency IDO1 enzymes are dispensable in many lower vertebrate lineages.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.13316DOI Listing

Publication Analysis

Top Keywords

ido2 enzymes
16
ido1 enzymes
16
affinity l-trp
16
ido1
12
lizard ido2
12
ido2
11
low efficiency
8
efficiency ido2
8
enzymes
8
enzymes conserved
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!