Large-scale analysis of the evolutionary histories of phosphorylation motifs in the human genome.

Gigascience

Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 Japan.

Published: December 2016

Background: Protein phosphorylation is a post-translational modification that is essential for a wide range of eukaryotic physiological processes, such as transcription, cytoskeletal regulation, cell metabolism, and signal transduction. Although more than 200,000 phosphorylation sites have been reported in the human genome, the physiological roles of most remain unknown. In this study, we provide some useful datasets for the assessment of functional phosphorylation signaling using a comparative genome analysis of phosphorylation motifs.

Findings: We described the evolutionary patterns of conservation of these and comparative genomic data for 93,101 phosphosites and 1,003,756 potential phosphosites in human phosphomotifs, using 178 phosphomotifs identified in a previous study that occupied 69% of known phosphosites in public databases. Comparative genomic analyses were performed using genomes from nine species from yeast to humans. Here we provide an overview of the evolutionary patterns of phosphomotif acquisition and indicate the dependence on motif structures. Using the data from our previous study, we describe the interaction networks of phosphoproteins, identify the kinase substrates associated with phosphoproteins, and perform gene ontology enrichment analyses. In addition, we show how this dataset can help to elucidate the function of phosphomotifs.

Conclusions: Our characterizations of motif structures and assessments of evolutionary conservation of phosphosites reveal physiological roles of unreported phosphosites. Thus, interactions between protein groups that share motifs are likely to be helpful for inferring kinase-substrate interaction networks. Our computational methods can be used to elucidate the relationships between phosphorylation signaling and cellular functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422407PMC
http://dx.doi.org/10.1186/s13742-015-0057-6DOI Listing

Publication Analysis

Top Keywords

human genome
8
physiological roles
8
phosphorylation signaling
8
evolutionary patterns
8
comparative genomic
8
previous study
8
motif structures
8
interaction networks
8
phosphorylation
6
phosphosites
5

Similar Publications

Background: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored.

View Article and Find Full Text PDF

Background: Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Of note, prenatal Zika infection can cause a spectrum of neurodevelopmental disorders, including congenital Zika syndrome.

View Article and Find Full Text PDF

Refining breast cancer genetic risk and biology through multi-ancestry fine-mapping analyses of 192 risk regions.

Nat Genet

January 2025

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.

Genome-wide association studies have identified approximately 200 genetic risk loci for breast cancer, but the causal variants and target genes are mostly unknown. We sought to fine-map all known breast cancer risk loci using genome-wide association study data from 172,737 female breast cancer cases and 242,009 controls of African, Asian and European ancestry. We identified 332 independent association signals for breast cancer risk, including 131 signals not reported previously, and for 50 of them, we narrowed the credible causal variants down to a single variant.

View Article and Find Full Text PDF

Aberrant immune responses to viral pathogens contribute to pathogenesis, but our understanding of pathological immune responses caused by viruses within the human virome, especially at a population scale, remains limited. We analyzed whole-genome sequencing datasets of 6,321 Japanese individuals, including patients with autoimmune diseases (psoriasis vulgaris, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), pulmonary alveolar proteinosis (PAP) or multiple sclerosis) and coronavirus disease 2019 (COVID-19), or healthy controls. We systematically quantified two constituents of the blood DNA virome, endogenous HHV-6 (eHHV-6) and anellovirus.

View Article and Find Full Text PDF

Multiomic characterization, immunological and prognostic potential of SMAD3 in pan-cancer and validation in LIHC.

Sci Rep

January 2025

Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.

SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!