The cystine/glutamate exchanger (system xc (-)) mediates the transport of cystine into the cell in exchange for glutamate. By releasing glutamate, system xc (-) can potentially cause excitotoxicity. However, through providing cystine to the cell, it regulates the levels of cellular glutathione (GSH), the main endogenous intracellular antioxidant, and may protect cells against oxidative stress. We tested two different compounds that deplete primary cortical cultures containing both neurons and astrocytes of intracellular GSH, L-buthionine-sulfoximine (L-BSO), and diethyl maleate (DEM). Both compounds caused significant concentration and time dependent decreases in intracellular GSH levels. However; DEM caused an increase in radiolabeled cystine uptake through system xc (-), while unexpectedly BSO caused a decrease in uptake. The compounds caused similar low levels of neurotoxicity, while only BSO caused an increase in oxidative stress. The mechanism of GSH depletion by these two compounds is different, DEM directly conjugates to GSH, while BSO inhibits γ-glutamylcysteine synthetase, a key enzyme in GSH synthesis. As would be expected from these mechanisms of action, DEM caused a decrease in intracellular cysteine, while BSO increased cysteine levels. The results suggest that negative feedback by intracellular cysteine is an important regulator of system xc (-) in this culture system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407525 | PMC |
http://dx.doi.org/10.1155/2015/269371 | DOI Listing |
Chem Sci
December 2024
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
Small ubiquitin-like modifier (SUMO) plays a pivotal role in diverse cellular processes and is implicated in diseases such as cancer and neurodegenerative disorders. However, large-scale identification of endogenous SUMO-1 faces challenges due to limited enrichment methods and its lower abundance compared to SUMO-2/3. Here we propose a novel combinatorial peptide strategy, combined with anti-adhesive polymer development, to enrich endogenous SUMO-1 modified peptides, revealing a comprehensive SUMOylation landscape.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile.
High-risk human papillomaviruses (HR-HPVs) are the etiological agents of cervical, anogenital, and a subset of oropharyngeal cancers. In addition, HR-HPVs have been detected in lung carcinomas worldwide, even though the role of these viruses in this type of cancer is not fully understood. This study evaluated the presence of HPV in a cohort of 204 lung cancer cases by multiplex polymerase chain reaction (PCR)-Luminex.
View Article and Find Full Text PDFCystine/cysteine is critical for antioxidant response and sulfur metabolism in cancer cells and is one of the most depleted amino acids in the PDAC microenvironment. The effects of cystine limitation stress (CLS) on PDAC progression are poorly understood. Here we report that adaptation to CLS (CLSA) promotes PDAC cell proliferation and tumor growth through translational upregulation of the oxidative pentose phosphate pathway (OxPPP).
View Article and Find Full Text PDFCommun Biol
January 2025
Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.
The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!