A numerical method to optimise the spatial dose distribution in carbon ion radiotherapy planning.

Radiat Prot Dosimetry

Institute of Nuclear Physics PAN, Krakow, Poland The Marie Skłodowska-Curie Centre of Oncology, Krakow Division, Krakow, Poland.

Published: September 2015

The authors describe a numerical algorithm to optimise the entrance spectra of a composition of pristine carbon ion beams which delivers a pre-assumed dose-depth profile over a given depth range within the spread-out Bragg peak. The physical beam transport model is based on tabularised data generated using the SHIELD-HIT10A Monte-Carlo code. Depth-dose profile optimisation is achieved by minimising the deviation from the pre-assumed profile evaluated on a regular grid of points over a given depth range. This multi-dimensional minimisation problem is solved using the L-BFGS-B algorithm, with parallel processing support. Another multi-dimensional interpolation algorithm is used to calculate at given beam depths the cumulative energy-fluence spectra for primary and secondary ions in the optimised beam composition. Knowledge of such energy-fluence spectra for each ion is required by the mixed-field calculation of Katz's cellular Track Structure Theory (TST) that predicts the resulting depth-survival profile. The optimisation algorithm and the TST mixed-field calculation are essential tools in the development of a one-dimensional kernel of a carbon ion therapy planning system. All codes used in the work are generally accessible within the libamtrack open source platform.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncv195DOI Listing

Publication Analysis

Top Keywords

carbon ion
12
depth range
8
profile optimisation
8
energy-fluence spectra
8
mixed-field calculation
8
numerical method
4
method optimise
4
optimise spatial
4
spatial dose
4
dose distribution
4

Similar Publications

Electrocatalytic synergy from Ni-enhanced WS for alkaline overall water splitting with tuning electronic structure and crystal phase transformation.

J Colloid Interface Sci

January 2025

Henan Key Laboratory of Polyoxometalate Chemistry, School of Energy Science and Technology, Henan University, Zhengzhou 450046, PR China. Electronic address:

Due to the limited active sites and poor conductivity, the application of tungsten disulfide (WS) in alkaline water electrolysis remains a challenge. Herein, Ni-WS nanosheet arrays were in situ grown on the carbon fiber paper (Ni-WS/CFP) as an electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, and the introduction degree of Ni can be regulated by adjusting the electrodeposition time. When the electrodeposition time is 3 min, Ni ions are doped into the lattice of WS, and by prolonging the electrodeposition time to 10 min, the nickel disulfide (NiS) crystal phase is generated to form NiS@WS heterojunction.

View Article and Find Full Text PDF

Tailored large-particle quantum dots with high color purity and excellent electroluminescent efficiency.

Sci Bull (Beijing)

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:

High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.

View Article and Find Full Text PDF

In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for "rocking chair" zinc-ion battery.

J Colloid Interface Sci

January 2025

School of Mechanical Engineering and Mechanics, School of Chemistry, Xiangtan University, Xiangtan 411105 PR China. Electronic address:

Developing insertion-type anodes is essential for designing high-performance "rocking chair" zinc-ion batteries. BiOCl shows great potential as an insertion-type anode material for Zn storage due to its high specific capacity and unique layered structure. However, the development of BiOCl has been significantly hampered by its poor stability and kinetics during cycling.

View Article and Find Full Text PDF

In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University (GXU), 100 Daxuedong Road, Xixiangtang District, Nanning 530004 China. Electronic address:

Porous carbons with large surface area (>3000 m/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons.

View Article and Find Full Text PDF

Advancements in functional adsorbents for sustainable recovery of rare earth elements from wastewater: A comprehensive review of performance, mechanisms, and applications.

Adv Colloid Interface Sci

January 2025

School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.

Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!