Fabrication of periodic arrays of metallic nanoparticles by block copolymer templates on HfO2 substrates.

Nanotechnology

Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, I-20864 Agrate Brianza (MB), Italy. NanoFacility, Divisione elettromagnetismo, INRiM, Strada delle Cacce 91, I-10135 Torino, Italy. Dipartimento di fisica, Università degli studi di Milano, Via Celoria 16, I-20133 Milano, Italy.

Published: May 2015

Block copolymer-based templates can be exploited for the fabrication of ordered arrays of metal nanoparticles (NPs) with a diameter down to a few nanometers. In order to develop this technique on metal oxide substrates, we studied the self-assembly of polymeric templates directly on the HfO₂ surface. Using a random copolymer neutralization layer, we obtained an effective HfO₂ surface neutralization, while the effects of surface cleaning and annealing temperature were carefully examined. Varying the block copolymer molecular weight, we produced regular nanoporous templates with feature size variable between 10 and 30 nm and a density up to 1.5 × 10¹¹ cm⁻². With the adoption of a pattern transfer process, we produced ordered arrays of Pt and Pt/Ti NPs with diameters of 12, 21 and 29 nm and a constant size dispersion (σ) of 2.5 nm. For the smallest template adopted, the NP diameter is significantly lower than the original template dimension. In this specific configuration, the granularity of the deposited film probably influences the pattern transfer process and very small NPs of 12 nm were achieved without a significant broadening of the size distribution.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/26/21/215301DOI Listing

Publication Analysis

Top Keywords

block copolymer
8
ordered arrays
8
hfo₂ surface
8
pattern transfer
8
transfer process
8
fabrication periodic
4
periodic arrays
4
arrays metallic
4
metallic nanoparticles
4
nanoparticles block
4

Similar Publications

Decoding the suppressing effects of Pluronic triblock copolymers on copper electrodeposition.

J Colloid Interface Sci

April 2025

Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China. Electronic address:

Triblock Pluronics of polyoxyethylene (PEO) and polyoxypropylene (PPO) are identified as competent suppressors for copper (Cu) electroplating in advanced electronics manufacturing. However, the specific interfacial roles of PEO and PPO blocks in Pluronic suppressors, are not yet fully understood, which is crucial for the rational design of effective suppressors. Herein, the influences of composition and block arrangement of such Pluronics on the inhibition against Cu plating are systematically investigated.

View Article and Find Full Text PDF

Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.

View Article and Find Full Text PDF

Targeted Polymer-Peptide Conjugates for E-Selectin Blockade in Renal Injury.

Pharmaceutics

January 2025

Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.

Background/objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e.

View Article and Find Full Text PDF

In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance.

View Article and Find Full Text PDF

This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!