AI Article Synopsis

  • The study compares the effectiveness of community-based (CB) directly observed therapy (DOT) to traditional clinic DOT for treating tuberculosis (TB).
  • CB DOT, facilitated by community health workers or volunteers, showed a significantly higher treatment success rate than clinic DOT, with a pooled odds ratio of 1.54.
  • However, the difference in loss to follow-up rates was not statistically significant, and findings should be viewed cautiously since only one of the eight studies analyzed was randomized.

Article Abstract

Background: Directly observed therapy (DOT), as recommended by the World Health Organization, is used in many countries to deliver tuberculosis (TB) treatment. The effectiveness of community-based (CB DOT) versus clinic DOT has not been adequately assessed to date. We compared TB treatment outcomes of CB DOT (delivered by community health workers or community volunteers), with those achieved through conventional clinic DOT.

Methods: We performed a systematic review and meta-analysis of studies before 9 July 2014 comparing treatment outcomes of CB DOT and clinic DOT. The primary outcome was treatment success; the secondary outcome was loss to follow-up.

Results: Eight studies were included comparing CB DOT to clinic DOT, one a randomised controlled trial. CB DOT outperformed clinic DOT treatment success (pooled odds ratio (OR) of 1.54, 95% confidence interval (CI) 1.01 - 2.36, p = 0.046, I(2) heterogeneity 84%). No statistically significant difference was found between the two DOT modalities for loss to follow-up (pooled OR 0.86, 95% CI 0.48 to 1.55, p = 0.62, I(2) 83%).

Conclusions: Based on this systematic review, CB DOT has a higher treatment success compared to clinic DOT. However, as only one study was a randomised controlled trial, the findings have to be interpreted with caution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436810PMC
http://dx.doi.org/10.1186/s12879-015-0945-5DOI Listing

Publication Analysis

Top Keywords

clinic dot
24
dot
15
systematic review
12
treatment success
12
directly observed
8
observed therapy
8
therapy dot
8
dot versus
8
versus clinic
8
review meta-analysis
8

Similar Publications

Ultrasensitive point-of-care multiplex diagnosis for influenza virus based robust quantum dot microsphere-lateral flow immunoassay.

Biosens Bioelectron

January 2025

Key Lab for Special Functional Materials of Ministry of Education, and School of Nanoscience and Materials Engineering, Henan University, 475004, Kaifeng, China. Electronic address:

Influenza A virus (IAV) and influenza B virus (IBV) with similar symptoms of infection caused a serious disease burden and economic losses in annual epidemic season, so it is important to quickly and accurately detect and distinguish between IAV and IBV during influenza season. Herein, the quantum dot microspheres (QDMS) were synthesized and applied to lateral flow immunoassays (LFIA), and a point-of-care (POC) biosensor that can discriminately and simultaneously diagnose IAV and IBV within 10 min was established. A double-sandwich QDMS nanotags was synthesized by immobilizing hydrophobic quantum dots (QDs) with chemical bonding method on a silica sphere template with an outer silica shell protection showed excellent stability and high fluorescence.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.

View Article and Find Full Text PDF

To investigate the expression pattern of pan-TRK protein in colorectal cancers with NTRK gene fusion and mismatch repair deficient (dMMR) and to analyze its molecular pathological characteristics. A total of 117 dMMR colorectal cancers diagnosed in the Department of Pathology of Henan Provincial People's Hospital, Zhengzhou, China from 2020 to 2023 were collected. Immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) and DNA/RNA-based next-generation sequencing (NGS) were used to detect pan-TRK protein expression and fusion partner genes in tumors, and to further explore the correlation between pan-TRK staining patterns and partner genes.

View Article and Find Full Text PDF

Enhancing Functional Breast Imaging: A sCMOS Camera-Based Lock-in Implementation for Dynamic Tomography.

J Biophotonics

January 2025

The College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China.

Diffuse optical tomography (DOT) enables the in vivo quantification of tissue chromophores, specifically the discernment of oxy- and deoxy-hemoglobin (HbO and HbR, correspondingly). This specific criterion is useful in detecting and predicting early-stage neoadjuvant breast cancer treatment response. To address the issues of the limited channels in the fiber-dependent breast DOT system and limited signal-to-noise ratio in the camera-dependent systems, we hereby present a camera-based lock-in detection scheme to achieve dynamic DOT with improved SNR, which adopted orthogonal frequency division multiplexing technology.

View Article and Find Full Text PDF

Current clinical care relies heavily on complex, rule-based systems for tasks like diagnosis and treatment. However, these systems can be cumbersome and require constant updates. This study explores the potential of the large language model (LLM), LLaMA 2, to address these limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!