Phase behavior of skin lipid mixtures: the effect of cholesterol on lipid organization.

Soft Matter

Leiden Academic Center for Drug Research, Department of Drug Delivery Technology, Gorlaeus Laboratories, University of Leiden, Einsteinweg 55, 2333 CC Leiden, The Netherlands.

Published: June 2015

The lipid matrix in the stratum corneum (SC), the upper layer of the skin, plays a critical role in the skin barrier. The matrix consists of ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). In human SC, these lipids form two coexisting crystalline lamellar phases with periodicities of approximately 6 and 13 nm. In the studies reported here, we investigated the effect of CHOL on lipid organization in each of these lamellar phases separately. For this purpose, we used lipid model mixtures. Our studies revealed that CHOL is imperative for the formation of each of the lamellar phases. At low CHOL levels, the formation of the lamellar phases was dramatically changed: a minimum 0.2 CHOL level in the CER/CHOL/FFA (1 : 0.2 : 1) mixture is required for the formation of each of the lamellar phases. Furthermore, CHOL enhances the formation of the highly dense orthorhombic lateral packing. The gradual increment of CHOL increases the fraction of lipids forming the very dense orthorhombic lateral packing. Therefore, these studies demonstrate that CHOL is an indispensable component of the SC lipid matrix and is of fundamental importance for appropriate dense lipid organization and thus important for the skin barrier function.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4sm02786hDOI Listing

Publication Analysis

Top Keywords

lamellar phases
20
lipid organization
12
formation lamellar
12
lipid matrix
8
skin barrier
8
chol
8
dense orthorhombic
8
orthorhombic lateral
8
lateral packing
8
lipid
7

Similar Publications

Carbon steel and low alloy steel are pearlitic heat-resistant steels with a lamellar microstructure. There are good mechanical properties and are widely used in crucial components of high-temperature pressure. However, long-term service in high-temperature environments can easily lead to material degradation, including spheroidization, graphitization, and thermal aging.

View Article and Find Full Text PDF

Microstructure and Mechanical Properties of Mg-8Li-3Al-0.3Si Alloy Deformed Through a Combination of Back-Extrusion and Spinning Process.

Materials (Basel)

January 2025

Shanxi Key Laboratory of Magnesium-Based Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

In this work, the Mg-8Li-3Al-0.3Si (LAS830) alloy was prepared by the vacuum melting method. The as-cast alloy was subjected to backward extrusion at 250 °C and then spun at 250 °C.

View Article and Find Full Text PDF

Anthropic activities have significantly elevated cadmium levels, making it a significant stressor in aquatic ecosystems. Present in high concentrations across water bodies, cadmium is known to bioaccumulate and biomagnify throughout the food chain. While the toxic effects of cadmium on the organs and tissues of aquatic species are well-documented, little is known about its impact on sensory systems crucial for survival.

View Article and Find Full Text PDF

Templating effect of monoglycerides in controlling the spatial distribution of solid fat crystals within double emulsions.

Food Chem

January 2025

Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China. Electronic address:

The spatial distribution of fat crystals significantly impacts the stability and digestion properties of emulsions. This study investigated the templating effect of monoglycerides in controlling the spatial distribution of solid fat crystallization within double emulsions. Double emulsions were formulated with glyceryl monostearate (GMS), glyceryl monolaurate (GML), glyceryl monooleate (GMO), beeswax (BW), glyceryl distearate (GDS), and glyceryl tristearate (GTS) in the oil phase.

View Article and Find Full Text PDF

In this article we describe research on the synthesis and characterization of a family of "Janus" amphiphiles composed of disaccharide head groups and alkaloid units joined together via a methylene linker, and bearing a lateral aliphatic chain of varying length. The condensed phases formed by self-organization of the products as a function of temperature were characterized by differential scanning calorimetry, thermal polarized light microscopy, and small angle X-ray scattering, allied with computational modelling and simulations. Structural studies on heating specimens from the solid showed that some homologues exhibited lamellar, columnar and bicontinuous mesophases, whereas the same homologues revealed different phase sequences on cooling from the amorphous liquid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!